Plasma-Chemistry of Arsenic Selenide Films: Relationship Between Film Properties and Plasma Power
Tóm tắt
High quality amorphous arsenic selenide chalcogenide films of different structure and stoichiometry were synthesized via plasma-enhanced chemical vapor deposition (PECVD). The low-temperature non-equilibrium RF (13.56 MHz) argon inductively-coupled plasma at low pressure (0.1 Torr) was implemented for the process. Commercial high-pure elemental arsenic and selenium were utilized as the starting materials. The chemical content and the structure of the samples were altered via change of parameters of the plasma process. The in situ optical emission spectroscopy of the chemically active plasma was employed to pinpoint the ways of initiation of plasma-chemical interactions between precursors. The obtained characteristics of the arsenic selenide PECVD films have been compared with ones for CVD. The behavior of impurities of the carbon nature in the processes of PECVD and CVD deposition was also studied.
Tài liệu tham khảo
Savage JA, Nielsen S (1965) Chalcogenide glasses in the infrared between 1 and 20 µm: a state of the art review. Infrared Phys 5(1):195–204
Hilton AR, Jones CE (1966) Non-oxide chalcogenide glasses. Part 2. Infrared absorption by oxide impurities. ibid 7(4):112–116
Hilton AR, Jones CE, Brau M (1966) Non-oxide chalcogenide glasses. Part 1. Glass-forming regions and variations in physical properties. Phys Chem Glasses 7(4):105–112
Kolomietz BT (1964) Vitreous semiconductors (review). Phys Stat Sol 7(3):713–731
Hilton AR (1966) Non-oxide chalcogenide glasses. Part 3. Structural studies. Phys Chem Glasses 7(4):116–126
Lines ME (1984) Scattering loss in fiber materials. II. Numerical evaluations. J Appl Phys 55(2):4052–4063
Dianov EM, Plotnichenko VG, Devyatykh GG, Churbanov MF, Scripachev IV (1989) Middle-Infrared chalcogenide glass fibers with losses lower than 100 dB km. Infrared Phys 29(2–4):303–307
Tutihasi S (1976) Photoconductivity of amorphous As2Se3. J Appl Phys 47:277
Golovchak R, Kovalskiy A, Miller AC, Jain H, Shpotyuk O (2007) Structure of Se-rich As–Se glasses by high-resolution x-ray photoelectron spectroscopy. Phys Rev B 76(12):125208
Chaudhari PK, Chenette ER, Van Der Ziel A (1972) Amorphous semiconducting 3As2Se3·2Sb2Se3 films. II. Electrical properties. J Appl Phys 43:3149
Buzdugan AI, Iovu MS, Popescu AA, Cherbari PG (1993) Sn-doped As–Se films for high-stable and sensitive optical recoding. Balk Phys Lett 1(1):7–9
Sarsembinov S, Prikhodko O, Ryaguzov A, Maksimova S, Ushanov V (2002) Differences in local structure between amorphous As–Se films prepared by different methods. Semicond Sci Technol 17:1072–1074
Palka K, Syrovy T, Schröter S, Brückner S, Rothhardt M, Vlcek M (2014) Preparation of arsenic sulfide thin films for integrated optical elements by spiral bar coating. Opt Mater Express 4:384–395
Slang S, Palka K, Janicek P, Grinco M, Vlcek M (2018) Solution processed As30Se70 chalcogenide glass thin films with specular optical quality: multi-component solvent approach. Opt Mater Express 8:948–959
Hermann M, Gogova D, Siche D, Schmidbauer M, Monemar B, Stutzmann M, Eickhoff M (2006) Nearly stress-free substrates for GaN homoepitaxy. J Cryst Growth 293(2):462–468. https://doi.org/10.1016/j.jcrysgro.2006.05.058
Gogova D, Larsson H, Kasic A, Yazdi GR, Ivanov I, Yakimova R, Monemar B, Aujol E, Frayssinet E, Faurie J-P (2005) High-quality 2 bulk-like free-standing GaN grown by hydridevapour phase epitaxy on a Si-doped metal organic vapour phase epitaxial GaN template with an ultra low dislocation density. Jpn J Appl Phys 44:1181. https://doi.org/10.1143/JJAP.44.1181
Mochalov L, Logunov A, Kornev R, Zelentsov S, Mashin A (2019) Enhancement of IR transparency of arsenic sulfide materials via plasmachemical conversion of the initial arsenic monosulfide in the low-temperature RF plasma. J Phys D: Appl. Phys. 52:015203. https://doi.org/10.1088/1361-6463/aae577
Mochalov L, Nezhdanov A, Strikovskiy A, Gushin M, Chidichimo G, De Filpo G, Mashin A (2017) Synthesis and properties of AsxTe100−x films prepared by plasma deposition via elemental As and Te. Opt Quantum Electron. https://doi.org/10.1007/s11082-017-1117-1
Mochalov L, Logunov A, Mashin A, Vorotyntsev A, Vorotyntsev V (2018) Purification of tellurium through thermal decomposition of plasma prepared tellurium hydride. Sep Purif Technol 204:276–280. https://doi.org/10.1016/j.seppur.2018.05.009
Mochalov L, Kornev R, Logunov A, Kudryashov M, Mashin A, Vorotyntsev A, Vorotyntsev V (2018) Behavior of carbon-containing impurities in the process of plasma-chemical distillation of sulfur. Plasma Chem Plasma Process 38(3):587–598. https://doi.org/10.1007/s11090-018-9879-1
Lindgren B, Palenius HP (1977) New measurements of the Se I resonance lines. Sol Phys 53:347–352. https://doi.org/10.1007/BF00160277
Morillon C, Vergés J (1974) Classification du Spectre d’Arc du Sélénium (Sel) entre 3 900 et 11 844 cm−1. Phys Scr 10:227. https://doi.org/10.1088/0031-8949/10/5/007
Ruedy JE, Gibbs RC (1934) The arc spectrum of selenium. Phys Rev 46:880. https://doi.org/10.1103/PhysRev.46.880
Erdevdy M, Markusha P, Shpenik O, Zvenihorodsky V (2015) Excitation of the gas-phase selenium by electron impact. Eur Phys J D 69:17. https://doi.org/10.1140/epjd/e2014-50642-0
Smirnov Y (2006) Dissociative excitation of selenium atoms in collisions of electrons with Se2 molecules. High Temp 44(5):656–664
Howard LE, Andrew KL (1985) Measurement and analysis of the spectrum of neutral arsenic. J Opt Soc Am B 2:1032–1077
Li H, Andrew KL (1971) First spark spectrum of arsenic. J Opt Soc Am 61:96–109. https://doi.org/10.1364/JOSA.61.000096
Meggers WF, Shenstone AG, Moore CE (1950) First spectrum of arsenic. J Res Notional Bur Stand 45(4):346–365
Almy GM, Kinzer GD (1935) The emission spectrum of diatomic arsenic. Phys Rev 47:721–730
Devyatykh GG, Churbanov MF (1997) High-purity chalcogenes. Monograph. Nizhny Novgorod University, Nizhny Novgorod, p 244
Zavilopulo AN, Shpenik OB, Mikita MI, Mylymko AM (2016) Investigation of the molecular beam of Se by electron ionization. J Tech Phys Lett 42(8):78–85
Mochalov L et al (2017) Influence of plasma-enhanced chemical vapor deposition parameters on characteristics of As–Te chalcogenide films. Plasma Chem Plasma Process 37(5):1417–1429
Leadbetter AJ, Apling AJ, Daniel MF (1976) Structures of vapour-deposited amorphous films of arsenic chalcogenides. J Non Cryst Solids 21:47–53
Oura K, Lifshits VG, Saranin AA, Zotov AV, Katayama M (2003) Surface science: an introduction. Springer, Berlin
Stranski IN, Krastanow L (1938) “Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander”. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse IIb. Akademie der Wissenschaften Wien 146:797–810
Iovu MS, Kamitsos EI, Varsamis CPE, Boolchand P, Popescu M (2005) Raman spectra of AsxSe100-x and As40Se60 glasses doped with metals. Chalcogenide Lett 2(3):21–25
Xuecai H, Yilin T (2017) Ab initio calculation and vibrational study on cage-like AsxSySez clusters in chalcogenide glasses. Roman J Mater 47(1):66–70
Tauc J (1974) Amorphous and liquid semiconductors. Plenum, New-York
Swanepoel R (1983) Determination of the thickness and optical constants of amorphous silicon. J Phys E: Sci Instrum 16(12):1214–1222
Ganjoo A, Golovchak R (2008) Computer program PARAV for calculating optical constants of thin films and bulk materials: case study of amorphous semiconductors. J Optoelectron Adv Mater 10(6):1328–1332
Tsu R, Howard WE, Esaki L (1968) Optical and Electrical Properties and Band Structure of GeTe and SnTe. Phys Rev 172(3):779–788
Mochalov L, Logunov A, Vorotyntsev V (2019) Structural and optical properties of As–Se–Te chalcogenide films prepared by plasma-enhanced chemical vapor deposition. Mater Res Expr. https://doi.org/10.1088/2053-1591/ab014d
Mochalov LA, Churbanov MF, Velmuzhov AP, Lobanov AS, Kornev RA, Sennikov GP (2015) Preparation of glasses in the Ge–S–I system by plasma-enhanced chemical vapor deposition. Opt Mater. https://doi.org/10.1016/j.optmat.2015.04.037