Plasma Chemical and Electrical Modeling of a Dielectric Barrier Discharge in Kr–Cl2 Gas Mixtures
Tóm tắt
This paper reports the study of the Kr–Cl2 plasma chemistry in terms of the homogenous model of a dielectric barrier discharge and for two kinds of the applied voltage excitation shape. The effect of Cl2 concentration in the gas mixture, as well as gas pressure and power frequency on the discharge efficiency and the 222 nm photon generation, under typical experimental operating conditions, have been investigated and discussed. Calculations suggest that the overall conversion efficiency from electrical energy to ultraviolet emission in the lamp is in the range of 4.4–12 %, and it will be very affected at high chlorine percentage (>1 %) and high gas pressure (>200 Torr). A comparison between the sinusoidal and the burst excitation waveforms reveals that the burst excitation method provides an enhanced light source performance compared to the sinusoidal wave.