Tỷ lệ Aβ42/40 trong huyết tương một mình hoặc kết hợp với FDG-PET có thể dự đoán chính xác tính dương tính của amyloid-PET: một phân tích cắt ngang từ Nghiên cứu AB255

Springer Science and Business Media LLC - Tập 11 - Trang 1-9 - 2019
Virginia Pérez-Grijalba1, Javier Arbizu2, Judith Romero1, Elena Prieto2, Pedro Pesini1, Leticia Sarasa1, Fernando Guillen2, Inmaculada Monleón1, Itziar San-José1, Pablo Martínez-Lage3, Josep Munuera4, Isabel Hernández5,6, Mar Buendía5, Oscar Sotolongo-Grau5, Montserrat Alegret5,6, Agustín Ruiz5,6, Lluis Tárraga5,6, Mercè Boada5,6, Manuel Sarasa1
1Araclon Biotech S.L, Zaragoza, Spain
2Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Pamplona, Spain
3Center for Research and Advanced Therapies and Memory Clinic, Fundación CITA-Alzheimer, San Sebastián, Spain
4Institut de recerca Sant Joan de Déu, Hospital Infantil Sant Joan de Déu, Barcelona, Spain
5Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
6Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain

Tóm tắt

Để hỗ trợ sàng lọc dân số và các thử nghiệm lâm sàng về các liệu pháp làm thay đổi bệnh đối với bệnh Alzheimer, thông tin về các biomarker hỗ trợ là cần thiết. Nghiên cứu này nhằm điều tra mối liên hệ giữa mức độ amyloid-beta (Aβ) trong huyết tương với sự hiện diện của tích lũy Aβ bệnh lý trong não được đo bằng amyloid-PET. Tỷ lệ Aβ42/40 trong huyết tương đơn lẻ hoặc kết hợp với biomarker dựa trên FDG-PET về sự thoái hóa thần kinh đã được đánh giá là những biomarker tiềm năng cho bệnh Alzheimer (AD). Chúng tôi đã bao gồm 39 đối tượng bình thường về nhận thức và 20 bệnh nhân bị rối loạn nhận thức nhẹ từ Nghiên cứu AB255, những người đã trải qua các quét PiB-PET. Tổng nồng độ Aβ40 và Aβ42 trong huyết tương (TP42/40) được định lượng bằng các bộ kit ABtest. Các đối tượng được phân loại thành dương tính hoặc âm tính với Aβ-PET, và khả năng của TP42/40 trong việc phát hiện tình trạng Aβ-PET dương tính đã được đánh giá bằng hồi quy logistic và phân tích đặc tính hoạt động của người nhận. Sự kết hợp của các biomarker Aβ huyết tương và FDG-PET đã được đánh giá hơn nữa như một sự cải thiện cho việc phát hiện và phân loại chẩn đoán bệnh amyloidosis não. Mười tám (30,5%) đối tượng có Aβ-PET dương tính. Tỷ lệ TP42/40 một mình xác định trạng thái Aβ-PET với diện tích dưới đường cong (AUC) là 0.881 (Khoảng tin cậy [CI] 95% = 0.779–0.982). Hiệu suất phân biệt của TP42/40 trong việc phát hiện các đối tượng Aβ-PET dương tính cho kết quả độ nhạy và độ đặc hiệu tại ngưỡng cắt của Youden là 77,8% và 87,5%, tương ứng, với giá trị dự đoán dương tính 0.732 và giá trị dự đoán âm tính 0.900. Tất cả các tham số này đã được cải thiện sau khi điều chỉnh mô hình cho các biến số đồng thời quan trọng. Việc áp dụng TP42/40 như một công cụ sàng lọc đầu tiên trong một quy trình chẩn đoán thứ tự sẽ giảm số lượng quét Aβ-PET xuống 64%. Sự kết hợp của cả điểm FDG-PET và biomarker Aβ huyết tương được tìm thấy là dự đoán Aβ-PET chính xác nhất, với AUC là 0.965 (CI 95% = 0.913–0.100). Tỷ lệ TP42/40 trong huyết tương cho thấy tiềm năng liên quan và đáng kể như một công cụ sàng lọc để xác định tính dương tính Aβ trong giai đoạn tiền lâm sàng và tiền triệu chứng của bệnh Alzheimer.

Từ khóa

#Amyloid-beta #Alzheimer #Huyết tương #FDG-PET #Sàng lọc #Biomarker

Tài liệu tham khảo

Buchhave P, Minthon L, Zetterberg H. Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry. 2012;69(1):9. Jack CR, Holtzman DM. Biomarker modeling of Alzheimer’s disease. Neuron. 2013;80(6):1347–58. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12(3):292–323. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62. Bateman RJ, Blennow K, Doody R, Hendrix S, Lovestone S, Salloway S. Plasma biomarkers of AD emerging as essential tools for drug development: an EU/US CTAD task force report. J Prev Alzheimer’s Dis JPAD. 2019;6(3):169–73. Hansson O, Zetterberg H, Vanmechelen E, Vanderstichele H, Andreasson U, Londos E, et al. Evaluation of plasma Aβ40 and Aβ42 as predictors of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neurobiol Aging. 2010;31(3):357–67. Lopez OL, Kuller LH, Mehta PD, Becker JT, Gach HM, Sweet RA, et al. Plasma amyloid levels and the risk of AD in normal subjects in the Cardiovascular Health Study. Neurology. 2008;70(19):1664–71. Lövheim H, Elgh F, Johansson A, Zetterberg H, Blennow K, Hallmans G, et al. Plasma concentrations of free amyloid β cannot predict the development of Alzheimer’s disease. Alzheimers Dement. 2017;13(7):778–82. Graff-Radford NR, Crook JE, Lucas J, Boeve BF, Knopman DS, Ivnik RJ, et al. Association of low plasma Aβ42/Aβ40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch Neurol. 2007;64:9. Lambert J-C, Schraen-Maschke S, Richard F, Fievet N, Rouaud O, Berr C, et al. Association of plasma amyloid with risk of dementia: the prospective Three-City Study. Neurology. 2009;73(11):847–53. Chouraki V, Beiser A, Younkin L, Preis SR, Weinstein G, Hansson O, et al. Plasma amyloid-β and risk of Alzheimer’s disease in the Framingham Heart Study. Alzheimers Dement. 2015;11(3):249–257.e1. van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM. Plasma Aβ1–40 and Aβ1–42 and the risk of dementia: a prospective case-cohort study. Lancet Neurol. 2006;5(8):655–60. Lui JK, Laws SM, Li Q-X, Villemagne VL, Ames D, Brown B, et al. Plasma amyloid-beta as a biomarker in Alzheimer’s disease: the AIBL study of aging. J Alzheimers Dis. 2010;20(4):1233–42. Devanand DP, Schupf N, Stern Y, Parsey R, Pelton GH, Mehta P, et al. Plasma A and PET PiB binding are inversely related in mild cognitive impairment. Neurology. 2011;77(2):125–31. Rembach A, Faux NG, Watt AD, Pertile KK, Rumble RL, Trounson BO, et al. Changes in plasma amyloid beta in a longitudinal study of aging and Alzheimer’s disease. Alzheimers Dement. 2014;10(1):53–61. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature. 2018;554(7691):249–54. Ovod V, Ramsey KN, Mawuenyega KG, Bollinger JG, Hicks T, Schneider T, et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement. 2017;13(8):841–9. Janelidze S, Stomrud E, Palmqvist S, Zetterberg H, van Westen D, Jeromin A, et al. Plasma β-amyloid in Alzheimer’s disease and vascular disease. Sci Rep. 2016;6(1):26801. Pérez-Grijalba V, Fandos N, Canudas J, Insua D, Casabona D, Lacosta AM, et al. Validation of immunoassay-based tools for the comprehensive quantification of Aβ40 and Aβ42 peptides in plasma. J Alzheimers Dis. 2016;54(2):751–62. Pérez-Grijalba V, Romero J, Pesini P, Sarasa L, Monleón I, San-José I, et al. Plasma Aβ42/40 ratio detects early stages of Alzheimer’s disease and correlates with CSF and neuroimaging biomarkers in the AB255 study. J Prev Alzheimers Dis. 2019;6(1):34–41. Fandos N, Pérez-Grijalba V, Pesini P, Olmos S, Bossa M, Villemagne VL, et al. Plasma amyloid β 42/40 ratios as biomarkers for amyloid β cerebral deposition in cognitively normal individuals. Alzheimers Dement Diagn Assess Dis Monit. 2017;8:179–87. de Rojas I, Romero J, Rodríguez-Gomez O, Pesini P, Sanabria A, Pérez-Cordon A, et al. Correlations between plasma and PET beta-amyloid levels in individuals with subjective cognitive decline: the Fundació ACE Healthy Brain Initiative (FACEHBI). Alzheimers Res Ther. 2018;10(1):119. Doecke J, Pérez-Grijalba V, Fandos N, Fowler C, Villemagne VL, Masters CL, et al. Total Aβ42/Aβ40 ratio in plasma predict amyloid-PET status, independent of clinical AD diagnosis. Neurology. 2019; in press. Risacher SL, Fandos N, Romero J, Sherriff I, Pesini P, Saykin AJ, et al. Plasma Aβ levels are associated with cerebral amyloid and tau deposition. Alzheimers Dementia. 2019;11:510–9. Jagust W, Reed B, Mungas D, Ellis W, Decarli C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology. 2007;69(9):871–7. Shaffer JL, Petrella JR, Sheldon FC, Choudhury KR, Calhoun VD, Coleman RE, et al. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology. 2013;266(2):583–91. Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging. 2011;32(7):1207–18. Chen K, Ayutyanont N, Langbaum JBS, Fleisher AS, Reschke C, Lee W, et al. Characterizing Alzheimer’s disease using a hypometabolic convergence index. NeuroImage. 2011;56(1):52–60. Arbizu J, Prieto E, Martínez-Lage P, Martí-Climent JM, García-Granero M, Lamet I, et al. Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer’s disease dementia. Eur J Nucl Med Mol Imaging. 2013;40(9):1394–405. Espinosa A, Alegret M, Pesini P, Valero S, Lafuente A, Buendía M, et al. Cognitive composites domain scores related to neuroimaging biomarkers within probable-amnestic mild cognitive impairment-storage subtype. J Alzheimers Dis. 2017;57(2):447–59. Alegret M, Espinosa A, Valero S, Vinyes-Junqué G, Ruiz A, Hernández I, et al. Cut-off scores of a brief neuropsychological battery (NBACE) for Spanish individual adults older than 44 years old. PLoS One. 2013;8(10):e76436. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. Blesa R, Pujol M, Aguilar M, Santacruz P, Bertran-Serra I, Hernández G, et al. Clinical validity of the “mini-mental state” for Spanish speaking communities. Neuropsychologia. 2001;39(11):1150–7. Wechsler D. WAIS–III. Wechsler adult intelligence scale–third edition. Technical manual. San Antonio: The Psychological Corporation; 1997. Alegret M, Espinosa A, Vinyes-Junqué G, Valero S, Hernández I, Tárraga L, et al. Normative data of a brief neuropsychological battery for Spanish individuals older than 49. J Clin Exp Neuropsychol. 2012;34(2):209–19. Buschke H. Cued recall in amnesia. J Clin Neuropsychol. 1984;6(4):433–40. Boada M, Tárraga L, Hernández I, Valero S, Alegret M, Ruiz A, et al. Design of a comprehensive Alzheimer’s disease clinic and research center in Spain to meet critical patient and family needs. Alzheimers Dement J Alzheimers Assoc. 2014;10(3):409–15. Nordberg A, Carter SF, Rinne J, Drzezga A, Brooks DJ, Vandenberghe R, et al. A European multicentre PET study of fibrillar amyloid in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2013;40(1):104–14. Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res. 1990;31(3):545–8. Insel PS, Mattsson N, Mackin RS, Schöll M, Nosheny RL, Tosun D, et al. Accelerating rates of cognitive decline and imaging markers associated with β-amyloid pathology. Neurology. 2016;86(20):1887–96. Schupf N, Tang MX, Fukuyama H, Manly J, Andrews H, Mehta P, et al. Peripheral A subspecies as risk biomarkers of Alzheimer’s disease. Proc Natl Acad Sci. 2008;105(37):14052–7. Swaminathan S, Risacher SL, Yoder KK, West JD, Shen L, Kim S, et al. Association of plasma and cortical amyloid beta is modulated by APOE ε4 status. Alzheimers Dement. 2014;10(1):e9–18. Furst AJ, Rabinovici GD, Rostomian AH, Steed T, Alkalay A, Racine C, et al. Cognition, glucose metabolism and amyloid burden in Alzheimer’s disease. Neurobiol Aging. 2012;33(2):215–25. La Joie R, Perrotin A, Barré L, Hommet C, Mézenge F, Ibazizene M, et al. Region-specific hierarchy between atrophy, hypometabolism, and β-amyloid (Aβ) load in Alzheimer’s disease dementia. J Neurosci. 2012;32(46):16265–73. Tauber C, Beaufils E, Hommet C, Ribeiro MJ, Vercouillie J, Vierron E, et al. Brain [18F]FDDNP binding and glucose metabolism in advanced elderly healthy subjects and Alzheimer’s disease patients. J Alzheimers Dis. 2013;36(2):311–20. Hatashita S, Yamasaki H, Suzuki Y, Tanaka K, Wakebe D, Hayakawa H. [18F]Flutemetamol amyloid-beta PET imaging compared with [11C]PIB across the spectrum of Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2014;41(2):290–300. Wirth M, Oh H, Mormino EC, Markley C, Landau SM, Jagust WJ. The effect of amyloid β on cognitive decline is modulated by neural integrity in cognitively normal elderly. Alzheimers Dement J Alzheimers Assoc. 2013;9(6):687–698.e1. Mosconi L, Andrews RD, Matthews DC. Comparing brain amyloid deposition, glucose metabolism, and atrophy in mild cognitive impairment with and without a family history of dementia. J Alzheimers Dis. 2013;35(3):509–24. Lowe VJ, Weigand SD, Senjem ML, Vemuri P, Jordan L, Kantarci K, et al. Association of hypometabolism and amyloid levels in aging, normal subjects. Neurology. 2014;82(22):1959–67. Kadir A, Almkvist O, Forsberg A, Wall A, Engler H, Långström B, et al. Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer’s disease. Neurobiol Aging. 2012;33(1):198.e1–14. Frings L, Spehl TS, Weber WA, Hüll M, Meyer PT. Amyloid-β load predicts medial temporal lobe dysfunction in Alzheimer dementia. J Nucl Med Off Publ Soc Nucl Med. 2013;54(11):1909–14. Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology. 2007;68(7):501–8. Zhou Y, Yu F, Duong TQ. Alzheimer’s Disease Neuroimaging Initiative. White matter lesion load is associated with resting state functional MRI activity and amyloid PET but not FDG in mild cognitive impairment and early Alzheimer’s disease patients. J Magn Reson Imaging. 2015;41(1):102–9. Drzezga A, Becker JA, Van Dijk KRA, Sreenivasan A, Talukdar T, Sullivan C, et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain J Neurol. 2011;134(Pt 6):1635–46.