Plant cell walls to ethanol

Biochemical Journal - Tập 442 Số 2 - Trang 241-252 - 2012
Douglas B. Jordan1, Michael J. Bowman1, Jay D. Braker1, Bruce S. Dien1, Ronald E. Hector1, Charles C. Lee2, Jeffrey A. Mertens1, Kurt Wagschal2
1USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, U.S.A.
2USDA Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, U.S.A.

Tóm tắt

Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1 s−1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae).

Từ khóa


Tài liệu tham khảo

Himmel, 2008, Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy, 10.1002/9781444305418

Wolfenden, 1999, The temperature dependence of enzyme rate enhancements, J. Am. Chem. Soc., 121, 7419, 10.1021/ja991280p

Himmel, 2008, Our challenge is to acquire deeper understanding of biomass recalcitrance and conversion, Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy, 1, 10.1002/9781444305418.ch1

Zhang, 2008, New generation biomass conversion: consolidated bioprocessing, Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy, 480, 10.1002/9781444305418.ch16

Gusakov, 2011, Alternatives to Trichoderma reesei in biofuel production, Trends Biotechnol., 29, 419, 10.1016/j.tibtech.2011.04.004

la Grange, 2010, Engineering cellulolytic ability into bioprocessing organisms, Appl. Environ. Microbiol., 87, 1195

Himmel, 2007, Biomass recalcitrance: engineering plants and enzymes for biofuels production, Science, 315, 804, 10.1126/science.1137016

Vogel, 2008, Unique aspects of the grass cell wall, Curr. Opin. Plant Biol., 11, 301, 10.1016/j.pbi.2008.03.002

Chundawat, 2011, Deconstruction of lignocellulosic biomass to fuels and chemicals, Annu. Rev. Chem. Biomol. Eng., 2, 121, 10.1146/annurev-chembioeng-061010-114205

Mansfield, 1999, Substrate and enzyme characteristics that limit cellulose hydrolysis, Biotechnol. Prog., 15, 804, 10.1021/bp9900864

Kroon-Batenburg, 1997, The crystal and molecular structures of cellulose I and II, Glycoconjugate J., 14, 677, 10.1023/A:1018509231331

Ding, 2006, The maize primary cell wall microfibril: a new model derived from direct visualization, J. Agric. Food Chem., 54, 597, 10.1021/jf051851z

Harris, 2008, Chemistry and molecular organization of plant cell walls, Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy, 61, 10.1002/9781444305418.ch4

Park, 2010, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnol. Biofuels, 3, 10, 10.1186/1754-6834-3-10

Klemm, 2005, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem., Int. Ed. Engl., 44, 3358, 10.1002/anie.200460587

Sherman, 1897, The insoluble carbohydrates of wheat, J. Am. Chem. Soc., 19, 291, 10.1021/ja02078a004

Timell, 1964, Wood hemicelluloses: Part I, Adv. Carbohydr. Chem. Biochem., 19, 247

Ebringerová, 2005, Hemicellulose, Adv. Polym. Sci., 186, 1, 10.1007/b136816

Godin, 2010, Détermination de la cellulose, des hémicelluloses, de la lignine et des cendres dans diverses cultures lignocellulosiques dédiées à la production de bioéthanol de deuxième génération, Biotechnol., Agron., Soc. Environ., 14, 549

Gomez, 2008, Sustainable liquid biofuels from biomass: the writing's on the walls, New Phytol., 178, 473, 10.1111/j.1469-8137.2008.02422.x

Mohnen, 2008, Cell wall polysaccharide synthesis, Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy, 94, 10.1002/9781444305418.ch5

Whistler, 1993, Hemicelluloses, 10.1016/B978-0-08-092654-4.50015-2

Scheller, 2010, Hemicelluloses, Annu. Rev. Plant Biol., 61, 263, 10.1146/annurev-arplant-042809-112315

Templeton, 2010, Compositional analysis of lignocellulosic feedstocks. 2. Method uncertainties, J. Agric. Food Chem., 58, 9054, 10.1021/jf100807b

Chen, 2007, Lignin modification improves fermentable sugar yields for biofuel production, Nat. Biotechnol., 25, 759, 10.1038/nbt1316

Dien, 2009, Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents, Bioenerg. Res., 2, 153, 10.1007/s12155-009-9041-2

Vogel, 2001, Genetic modification of herbaceous plants for feed and fuel, Crit. Rev. Plant Sci., 20, 15, 10.1080/20013591099173

Mohnen, 2008, Pectin structure and biosynthesis, Curr. Opin. Plant Biol., 11, 266, 10.1016/j.pbi.2008.03.006

de Vries, 2001, Aspergillus enzymes involved in degradation of plant cell wall polysaccharides, Microbiol. Mol. Biol. Rev., 65, 497, 10.1128/MMBR.65.4.497-522.2001

Grohmann, 1998, Fermentation of galacturonic acid and pectin-rich materials to ethanol by genetically modified strains of Erwinia, Biotechnol. Lett., 20, 195, 10.1023/A:1005349112770

Wilkins, 2007, Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol, Process Biochem., 42, 1614, 10.1016/j.procbio.2007.09.006

Ishizawa, 2009, Can delignification decrease cellulose digestibility in acid pretreated corn stover?, Cellulose, 16, 677, 10.1007/s10570-009-9313-1

Ximenes, 2011, Deactivation of cellulases by phenols, Enzyme Microb. Technol., 48, 54, 10.1016/j.enzmictec.2010.09.006

Kim, 2011, Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass, Enzyme Microb. Technol., 48, 408, 10.1016/j.enzmictec.2011.01.007

Ximenes, 2009, Inhibition of cellulases by phenols, Enzyme Microb. Technol., 46, 170, 10.1016/j.enzmictec.2009.11.001

Hodge, 2008, Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose, Bioresour. Technol., 99, 8940, 10.1016/j.biortech.2008.05.015

Kumar, 2009, Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies, Biotechnol. Bioeng., 102, 457, 10.1002/bit.22068

Merino, 2007, Progress and challenges in enzyme development for biomass utilization, Adv. Biochem. Eng./Biotechnol., 108, 95

Qing, 2010, Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes, Bioresour. Technol., 101, 9624, 10.1016/j.biortech.2010.06.137

Klinke, 2004, Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass, Appl. Microbiol. Biotechnol., 66, 10, 10.1007/s00253-004-1642-2

Palmqvist, 2000, Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification, Bioresour. Technol., 74, 17, 10.1016/S0960-8524(99)00160-1

Palmqvist, 2000, Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition, Bioresour. Technol., 74, 25, 10.1016/S0960-8524(99)00161-3

Teymouri, 2005, Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover, Bioresour. Technol., 96, 2014, 10.1016/j.biortech.2005.01.016

Wyman, 2009, Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies, Biotechnol. Prog., 25, 333, 10.1002/btpr.142

Gould, 1984, Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification, Biotechnol. Bioeng., 26, 46, 10.1002/bit.260260110

Gould, 1985, Studies on the mechanism of alkaline peroxide delignification of agricultural residues, Biotechnol. Bioeng., 27, 225, 10.1002/bit.260270303

Gould, 1985, Enhanced polysaccharide recovery from agricultural residues and perennial grasses treated with alkaline hydrogen peroxide, Biotechnol. Bioeng., 27, 893, 10.1002/bit.260270622

Mosier, 2005, Optimization of pH controlled liquid hot water pretreatment of corn stover, Bioresour. Technol., 96, 1986, 10.1016/j.biortech.2005.01.013

Shuai, 2010, Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production, Bioresour. Technol., 101, 3106, 10.1016/j.biortech.2009.12.044

Zhu, 2010, Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency, Appl. Microbiol. Biotechnol., 86, 1355, 10.1007/s00253-009-2408-7

Dadi, 2006, Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step, Biotechnol. Bioeng., 95, 904, 10.1002/bit.21047

Samayam, 2010, Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures, Bioresour. Technol., 101, 3561, 10.1016/j.biortech.2009.12.066

Swatloski, 2002, Dissolution of cellulose with ionic liquids, J. Am. Chem. Soc., 124, 4974, 10.1021/ja025790m

Zhu, 2006, Dissolution of cellulose with ionic liquids and its application: a mini-review, Green Chem., 8, 325, 10.1039/b601395c

Jeoh, 2007, Cellulase digestinility of pretreated biomass is limited by cellulose accessibility, Biotechnol. Bioeng., 98, 112, 10.1002/bit.21408

Chundawat, 2011, Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment, Energy Environ. Sci., 4, 973, 10.1039/c0ee00574f

Grethlein, 1985, The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates, Nat. Biotechnol., 3, 155, 10.1038/nbt0285-155

Stone, 1969, Digestibility as a simple function of a molecule of similar size to a cellulase enzyme, Adv. Chem. Ser., 95, 219, 10.1021/ba-1969-0095.ch013

Gruno, 2004, Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate, Biotechnol. Bioeng., 86, 503, 10.1002/bit.10838

Zhang, 2006, A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure, Biomacromolecules, 7, 644, 10.1021/bm050799c

Jalak, 2010, Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis, Biotechnol. Bioeng., 106, 871, 10.1002/bit.22779

Lantz, 2010, Hypocrea jecorina CEL6A protein engineering, Biotechnol. Biofuels, 3, 20, 10.1186/1754-6834-3-20

Igarashi, 2009, High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose, J. Biol. Chem., 284, 36186, 10.1074/jbc.M109.034611

Reverbel-Leroy, 1997, The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form, J. Bacteriol., 179, 46, 10.1128/jb.179.1.46-52.1997

Bronnenmeier, 1990, Cellulose hydrolysis by a highly thermostable endo-1,4-β-glucanase (Avicelase I) from Clostridium stercorarium, Enzyme Microb. Technol., 12, 431, 10.1016/0141-0229(90)90053-S

Graham, 2011, Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment, Nat. Commun., 2, 375, 10.1038/ncomms1373

Cantarel, 2009, The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics, Nucleic Acids Res., 37, D233, 10.1093/nar/gkn663

Harris, 2010, Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family, Biochemistry, 49, 3305, 10.1021/bi100009p

Quinlan, 2011, Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components, Proc. Natl. Acad. Sci. U.S.A., 108, 15079, 10.1073/pnas.1105776108

Langston, 2011, Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61, Appl. Environ. Microbiol., 77, 7007, 10.1128/AEM.05815-11

Phillips, 2011, Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa, ACS Chem. Biol., 10.1021/cb200351y

Langston, 2006, Substrate specificity of Aspergillus oryzae family 3 β-glucosidase, Biochim. Biophys. Acta, 1764, 972, 10.1016/j.bbapap.2006.03.009

Decker, 2008, Enzymatic depolymerization of plant cell wall hemicelluloses, Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy, 352, 10.1002/9781444305418.ch10

Yu, 2003, Enzymic release of reducing sugars from oat hulls by cellulase, as influenced by Aspergillus ferulic acid esterase and Trichoderma xylanase, J. Agric. Food Chem., 51, 218, 10.1021/jf020476x

Selig, 2008, Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities, Bioresour. Technol., 99, 4997, 10.1016/j.biortech.2007.09.064

Vries, 2000, Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides, Carbohydr. Res., 327, 401, 10.1016/S0008-6215(00)00066-5

Siika-aho, 1994, An α-glucuronidase from Trichoderma reesei RUT C-30, Enzyme Microb. Technol., 16, 813, 10.1016/0141-0229(94)90041-8

Biely, 1986, Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan, Nat. Biotechnol., 4, 731, 10.1038/nbt0886-731

Faulds, 1991, The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes, J. Gen. Microbiol., 137, 2339, 10.1099/00221287-137-10-2339

Faulds, 1995, Release of ferulic acid from wheat bran by a ferulic acid esterase (FAE-III) from Aspergillus niger, Appl. Microbiol. Biotechnol., 43, 1082, 10.1007/BF00166929

Collins, 2005, Xylanases, xylanase families and extremophilic xylanases, FEMS Microbiol. Rev., 29, 3, 10.1016/j.femsre.2004.06.005

Pell, 2004, The mechanisms by which family 10 glycoside hydrolases bind decorated substrates, J. Biol. Chem., 279, 9597, 10.1074/jbc.M312278200

Iefuji, 1996, Acid xylanase from yeast Cryptococcus sp. S-2: purification, characterization, cloning, and sequencing, Biosci., Biotechnol., Biochem., 60, 1331, 10.1271/bbb.60.1331

Kimura, 2000, Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp.40, Biosci., Biotechnol., Biochem., 64, 1230, 10.1271/bbb.64.1230

Ohta, 2001, Purification and characterization of an acidophilic xylanase from Aureobasidium pullulans var. melanigenum and sequence analysis of the encoding gene, J. Biosci. Bioeng., 92, 262, 10.1016/S1389-1723(01)80260-7

Johnvesly, 2002, Cellulase-free thermostable alkaline xylanase from thermophilic and alkalophilic Bacillus sp. JB-99, J. Microbiol. Biotechnol., 12, 153

Annamalai, 2009, Thermostable and alkaline tolerant xylanase production by Bacillus subtilis isolated form marine environment, Indian J. Biotechnol., 8, 291

Bajaj, 2010, Thermoactive alkali-stable xylanase production from a newly isolated Streptomyces sp. SU 9, Indian J. Chem. Technol., 17, 375

Sunna, 2003, A gene encoding a novel extremely thermostable 1,4-β-xylanase isolated directly from an environmental DNA sample, Extremophiles, 7, 63, 10.1007/s00792-002-0296-1

Luo, 2009, A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1, Extremophiles, 13, 849, 10.1007/s00792-009-0272-0

Barabote, 2010, Xyn10A, a thermostable endoxylanase from Acidothermus cellulolyticus 11B, Appl. Environ. Microbiol., 76, 7363, 10.1128/AEM.01326-10

Hou, 2006, Novel cold-adaptive Penicillium strain FS010 secreting thermo-labile xylanase isolated from Yellow Sea, Acta Biochim. Biophys. Sin., 38, 142, 10.1111/j.1745-7270.2006.00135.x

Lee, 2006, Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library, Extremophiles, 10, 295, 10.1007/s00792-005-0499-3

Jordan, 2010, Properties and applications of microbial β-D-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium, Appl. Microbiol. Biotechnol., 86, 1647, 10.1007/s00253-010-2538-y

Ly, 1999, Mutagenesis of glycosidases, Annu. Rev. Biochem., 68, 487, 10.1146/annurev.biochem.68.1.487

Cotta, 1998, Xylooligosaccharide utilization by the ruminal anaerobic bacterium Selenomonas ruminantium, Curr. Microbiol., 36, 183, 10.1007/s002849900291

Whitehead, 2001, Identification of a broad-specificity xylosidase/arabinofuranosidase important for xylooligosaccharide fermentation by the ruminal anaerobe Selenomonas ruminantium GA192, Curr. Microbiol., 43, 293, 10.1007/s002840010304

Jordan, 2008, β-D-Xylosidase from Selenomonas ruminantium: catalyzed reactions with natural and artificial substrates, Appl. Biochem. Biotechnol., 146, 137, 10.1007/s12010-007-8064-4

Wagschal, 2011, Catalytic properties of β-D-xylosidase XylBH43 from Bacillus halodurans C-125 and mutant XylBH43-W147G, Process Biochem.

Jordan, 2007, Variation in relative substrate specificity of bifunctional β-D-xylosidase/α-L-arabinofuranosidase by single-site mutations: roles of substrate distortion and recognition, Biochim. Biophys. Acta, 1774, 1192, 10.1016/j.bbapap.2007.06.010

Jordan, 2011, Opposing influences by subsite −1 and subsite +1 residues on relative xylopyranosidase/arabinofuranosidase activities of bifunctional β-D-xylosidase/α-L-arabinofuranosidase, Biochim. Biophys. Acta, 1814, 1648, 10.1016/j.bbapap.2011.08.010

Wagschal, 2009, Purification and characterization of a glycoside hydrolase family 43 β-xylosidase from Geobacillus thermoleovorans IT-08, Appl. Biochem. Biotechnol., 155, 304, 10.1007/s12010-008-8362-5

Jordan, 2011, Engineering lower inhibitor affinities in β-D-xylosidase of Selenomonas ruminantium by site-directed mutagenesis of Trp145, J. Ind. Microbiol. Biotechnol., 38, 1821, 10.1007/s10295-011-0971-2

Zanoelo, 2004, Purification and biochemical properties of a thermostable xylose-tolerant β-D-xylosidase from Scytalidium thermophilum, J. Ind. Microbiol. Biotechnol., 31, 170, 10.1007/s10295-004-0129-6

Yan, 2008, A xylose-tolerant β-xylosidase from Paecilomyces thermophila: characterization and its co-action with the endogenous xylanase, Bioresour. Technol., 99, 5402, 10.1016/j.biortech.2007.11.033

Knob, 2010, β-Xylosidases from filamentous fungi: an overview, World J. Microbiol. Biotechnol., 26, 389, 10.1007/s11274-009-0190-4

Wagschal, 2008, Cloning, expression and characterization of a glycoside hydrolase family 39 xylosidase from Bacillus Halodurans C-125, Appl. Biochem. Biotechnol., 146, 69, 10.1007/s12010-007-8055-5

Shao, 2011, Characterization of a novel β-xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485, Appl. Environ. Microbiol., 77, 719, 10.1128/AEM.01511-10

Saha, 2000, α-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology, Biotechnol. Adv., 18, 403, 10.1016/S0734-9750(00)00044-6

Beldman, 1997, Arabinans and arabinan degrading enzymes, Adv. Macromol. Carbohydr. Res., 1, 1, 10.1016/S1874-5261(97)80003-0

Mai, 2000, Cloning, sequencing, and characterization of the bifunctional xylosidase-arabinosidase from the thermophile Thermoanaerobacter ethanolicus, Gene, 247, 137, 10.1016/S0378-1119(00)00106-2

Wagschal, 2009, Biochemical characterization of a novel dual-function arabinofuranosidase/xylosidase isolated from a compost starter mixture, Appl. Microbiol. Biotechnol., 81, 855, 10.1007/s00253-008-1662-4

Bischoff, 2011, Purification and characterization of arabinofuranosidase from the corn endophyte Acremonium zeae, Biotechnol. Lett., 33, 2013, 10.1007/s10529-011-0658-9

Yoshida, 2010, Domain analysis of a modular α-L-arabinofuranosidase with a unique carbohydrate binding strategy from the fiber-degrading bacterium Fibrobacter succinogenes S85, J. Bacteriol., 192, 5424, 10.1128/JB.00503-10

de Wet, 2004, Microbial α-glucuronidases, Lignocellulose Biodegradation, 241, 10.1021/bk-2004-0889.ch014

Roy, 1968, The acid hydrolysis of glycosides, Carbohydr. Res., 6, 482, 10.1016/S0008-6215(00)81244-6

Das, 1981, Lignin-xylan ester linkage in jute fiber (Corchorus capsularis), Carbohydr. Res., 94, 73, 10.1016/S0008-6215(00)85597-4

Das, 1984, On the ester linkage between lignin and 4-O-methyl-glucurono-D-xylan in jute fiber (Corchorus capsularis), Carbohydr. Res., 127, 345, 10.1016/0008-6215(84)85369-0

Takahashi, 1988, Ester linkages between lignin and glucuronoxylan in a lignin-carbohydrate complex from beech (Fagus crenata) wood, Wood Sci. Technol., 22, 231, 10.1007/BF00386018

de Wet, 2006, Characterization of the Aureobasidium pullulans α-glucuronidase expressed in Saccharomyces cerevisiae, Enzyme Microb. Technol., 38, 649, 10.1016/j.enzmictec.2005.07.018

Castanares, 1995, D-Xylan-degrading enzyme system from the fungus Phanerochaete chrysosporium: isolation and partial characterisation of an α-(4-O-methyl)-D-glucuronidase, J. Biotechnol., 43, 183, 10.1016/0168-1656(95)00128-X

Kawabata, 1995, Purification and characterization of α-glucuronidase from snail acetone powder, Biosci., Biotechnol., Biochem., 59, 1086, 10.1271/bbb.59.1086

Kiryu, 2005, Purification and characterization of a novel α-glucuronidase from Aspergillus niger specific for O-α-D-glucosyluronic acid α-D-glucosiduronic acid, Biosci., Biotechnol., Biochem., 69, 522, 10.1271/bbb.69.522

Ruile, 1997, Isolation and analysis of a gene encoding α-glucuronidase, an enzyme with a novel primary structure involved in the breakdown of xylan, Mol. Microbiol., 23, 267, 10.1046/j.1365-2958.1997.2011568.x

Ryabova, 2009, A novel family of hemicellulolytic α-glucuronidase, FEBS Lett., 583, 1457, 10.1016/j.febslet.2009.03.057

Holmquist, 2000, α/β hydrolase fold enzymes: structures, functions and mechanisms, Curr. Protein Pept. Sci., 1, 209, 10.2174/1389203003381405

Biely, 2004, Enzyme-coupled assay of acetylxylan esterases on monoacetylated 4-nitrophenyl β-D xylopyranosides, Anal. Biochem., 332, 109, 10.1016/j.ab.2004.04.022

Bacon, 1975, Acetyl groups in cell-wall preparations from higher plants, Biochem. J., 149, 485, 10.1042/bj1490485

Sundberg, 1991, Purification and properties of two acetylxylan esterases of Trichoderma reesei, Biotechnol. Appl. Biochem., 13, 1

Mathew, 2004, Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications, Crit. Rev. Biotechnol., 24, 59, 10.1080/07388550490491467

Wong, 2006, Feruloyl esterase: a key enzyme in biomass degradation, Appl. Biochem. Biotechnol., 133, 87, 10.1385/ABAB:133:2:87

Faulds, 2010, What can feruloyl esterases do for us?, Phytochem. Rev., 9, 121, 10.1007/s11101-009-9156-2

Ralph, 2010, Hydroxycinnamates in lignification, Phytochem. Rev., 9, 65, 10.1007/s11101-009-9141-9

Liyama, 1994, Covalent cross-links in the cell wall, Plant Physiol., 104, 315, 10.1104/pp.104.2.315

Kroon, 1997, Methyl phenylalkanoates as substrates to probe the active sites of esterases, Eur. J. Biochem., 248, 245, 10.1111/j.1432-1033.1997.00245.x

Topakas, 2004, Purification and characterization of a type B feruloyl esterase (StFAE-A) from the thermophilic fungus Sporotrichum thermophile, Appl. Microbiol. Biotechnol., 63, 686, 10.1007/s00253-003-1481-6

Goldstone, 2010, Structural and functional characterization of a promiscuous feruloyl esterase (Est1E) from the rumen bacterium Butyrivibrio proteoclasticus, Proteins: Struct., Funct., Bioinf., 78, 1457, 10.1002/prot.22662

Fischer, 2008, Selection and optimization of microbial hosts for biofuels production, Metab. Eng., 10, 295, 10.1016/j.ymben.2008.06.009

Dien, 2003, Bacteria engineered for fuel ethanol production: current status, Appl. Microbiol. Biotechnol., 63, 258, 10.1007/s00253-003-1444-y

Dien, 2000, Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass, Appl. Biochem. Biotechnol., 84–86, 181, 10.1385/ABAB:84-86:1-9:181

Yomano, 2008, Re-engineering Escherichia coli for ethanol production, Biotechnol. Lett., 30, 2097, 10.1007/s10529-008-9821-3

Olsson, 1993, Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates, Process Biochem., 28, 249, 10.1016/0032-9592(93)80041-E

van Maris, 2006, Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status, Antonie Van Leeuwenhoek, 90, 391, 10.1007/s10482-006-9085-7

Van Vleet, 2009, Yeast metabolic engineering for hemicellulosic ethanol production, Curr. Opin. Biotechnol., 20, 300, 10.1016/j.copbio.2009.06.001

Hahn-Hägerdal, 2007, Towards industrial pentose-fermenting yeast strains, Appl. Microbiol. Biotechnol., 74, 937, 10.1007/s00253-006-0827-2

Young, 2010, Optimizing pentose utilization in yeast: the need for novel tools and approaches, Biotechnol. Biofuels, 3, 24, 10.1186/1754-6834-3-24

Johnsen, 2004, Novel xylose dehydrogenase in the halophilic archaeon Haloarcula marismortui, J. Bacteriol., 186, 6198, 10.1128/JB.186.18.6198-6207.2004

Stephens, 2007, Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus, J. Bacteriol., 189, 2181, 10.1128/JB.01438-06

Johnsen, 2009, D-Xylose degradation pathway in the halophilic archaeon Haloferax volcanii, J. Biol. Chem., 284, 27290, 10.1074/jbc.M109.003814

Nunn, 2010, Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius, J. Biol. Chem., 285, 33701, 10.1074/jbc.M110.146332

Verduyn, 1985, Properties of the NAD(P)H-dependent xylose reductase from the xylosefermenting yeast Pichia stipitis, Biochem. J., 226, 669, 10.1042/bj2260669

Kuyper, 2003, High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?, FEMS Yeast Res., 4, 69, 10.1016/S1567-1356(03)00141-7

Brat, 2009, Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae, Appl. Environ. Microbiol., 75, 2304, 10.1128/AEM.02522-08

Nygård, 2011, Bioconversion of D-xylose to D-xylonate with Kluyveromyces lactis, Metab. Eng., 13, 383, 10.1016/j.ymben.2011.04.001

Heath, 1956, Acetyl phosphate formation in the phosphorolytic cleavage of pentose phosphate, J. Am. Chem. Soc., 78, 5449, 10.1021/ja01601a081

Heath, 1958, Pentose fermentation by Lactobacillus plantarum, J. Biol. Chem., 231, 1009, 10.1016/S0021-9258(18)70463-8

Evans, 1984, Induction of xylulose-5-phosphate phosphoketolase in a variety of yeasts grown on D-xylose: the key to efficient xylose metabolism, Arch. Microbiol., 139, 48, 10.1007/BF00692711

Sonderegger, 2004, Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae, Appl. Environ. Microbiol., 70, 2892, 10.1128/AEM.70.5.2892-2897.2004

Jojima, 2010, Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook, Appl. Microbiol. Biotechnol., 85, 471, 10.1007/s00253-009-2292-1

Young, 2011, Functional survey for heterologous sugar transport proteins using Saccharomyces cerevisiae as a host, Appl. Environ. Microbiol., 77, 3311, 10.1128/AEM.02651-10

Hector, 2008, Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption, Appl. Microbiol. Biotechnol., 80, 675, 10.1007/s00253-008-1583-2

Runquist, 2009, Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 82, 123, 10.1007/s00253-008-1773-y

Hamacher, 2002, Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization, Microbiology, 148, 2783, 10.1099/00221287-148-9-2783

Saloheimo, 2007, Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases, Appl. Microbiol. Biotechnol., 74, 1041, 10.1007/s00253-006-0747-1

Weierstall, 1999, Cloning and characterization of three genes (SUT1–3) encoding glucose transporters of the yeast Pichia stipitis, Mol. Microbiol., 31, 871, 10.1046/j.1365-2958.1999.01224.x

Cirillo, 1968, Relationship between sugar structure and competition for the sugar transport system in Bakers' yeast, J. Bacteriol., 95, 603, 10.1128/jb.95.2.603-611.1968

Alcorn, 1978, A kinetic analysis of D-xylose transport in Rhodotorula glutinis, Biochim. Biophys. Acta, 510, 361, 10.1016/0005-2736(78)90036-6

Lucas, 1986, Transport of hemicellulose monomers in the xylose-fermenting yeast Candida shehatae, Appl. Environ. Microbiol., 23, 491

Kilian, 1988, Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis, Appl. Microbiol. Biotechnol., 27, 545, 10.1007/BF00451629

Does, 1989, Characterization of Xylose uptake in the yeasts Pichia heedii and Pichia stipitis, Appl. Environ. Microbiol., 55, 159, 10.1128/aem.55.1.159-164.1989

Kilian, 1993, The kinetics and regulation of D-xylose transport in Candida utilis, World J. Microbiol. Biotechnol., 9, 357, 10.1007/BF00383080

Nobre, 1999, Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii, Appl. Environ. Microbiol., 65, 3594, 10.1128/AEM.65.8.3594-3598.1999

Bruinenberg, 1983, The role of redox balances in the anaerobic fermentation of xylose by yeasts, Eur. J. Appl. Microbiol. Biotechnol., 18, 287, 10.1007/BF00500493

Bowman, 2010, Stereochemistry of furfural reduction by a Saccharomyces cerevisiae aldehyde reductase that contributes to in situ furfural detoxification, Appl. Environ. Microbiol., 76, 4926, 10.1128/AEM.00542-10

Bengtsson, 2009, Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae, Biotechnol. Biofuels, 2, 9, 10.1186/1754-6834-2-9

Petschacher, 2008, Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae, Microb. Cell Fact., 7, 9, 10.1186/1475-2859-7-9

Watanabe, 2007, Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis, Microbiology, 153, 3044, 10.1099/mic.0.2007/007856-0

Jeppsson, 2006, The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae, Biotechnol. Bioeng., 93, 665, 10.1002/bit.20737

Nissen, 2001, Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool, Yeast, 18, 19, 10.1002/1097-0061(200101)18:1<19::AID-YEA650>3.0.CO;2-5

Hou, 2009, Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 82, 909, 10.1007/s00253-009-1900-4

van Maris, 2007, Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component, Adv. Biochem. Eng./Biotechnol., 108, 179

Hector, 2011, Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation, Yeast, 28, 645, 10.1002/yea.1893

Hahn-Hägerdal, 2007, Metabolic engineering for pentose utilization in Saccharomyces cerevisiae, Adv. Biochem. Eng./Biotechnol., 108, 147

Stambuk, 2009, Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis, Genome Res., 19, 2271, 10.1101/gr.094276.109

Ha, 2011, Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation, Proc. Natl. Acad. Sci. U.S.A., 108, 504, 10.1073/pnas.1010456108

Wyman, 2005, Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover, Bioresour. Technol., 96, 2026, 10.1016/j.biortech.2005.01.018

Chu, 2007, Genetic improvement of Saccharomyces cerevisiae for xylose fermentation, Biotechnol. Adv., 25, 425, 10.1016/j.biotechadv.2007.04.001

Runquist, 2009, Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae, Microb. Cell Fact., 8, 49, 10.1186/1475-2859-8-49

Salusjärvi, 2008, Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae, Microb. Cell Fact., 7, 18, 10.1186/1475-2859-7-18

Salusjärvi, 2003, Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae, Yeast, 20, 295, 10.1002/yea.960

Thomson, 1993, Molecular biology of xylan degradation, FEMS Microbiol. Rev., 10, 65, 10.1111/j.1574-6968.1993.tb05864.x

Carvalheiro, 2008, Hemicellulose biorefineries: a review on biomass pretreatments, J. Sci. Ind. Res., 67, 849

Dodd, 2009, Enzymatic deconstruction of xylan for biofuel production. Global change biology, Bioenergy, 1, 2

Gírio, 2010, Hemicelluloses for fuel ethanol: a review, Bioresour. Technol., 101, 4775, 10.1016/j.biortech.2010.01.088