Plant Genome Engineering with Sequence-Specific Nucleases

Annual Review of Plant Biology - Tập 64 Số 1 - Trang 327-350 - 2013
Daniel F. Voytas1
1Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455;

Tóm tắt

Recent advances in genome engineering provide newfound control over a plant's genetic material. It is now possible for most bench scientists to alter DNA in living plant cells in a variety of ways, including introducing specific nucleotide substitutions in a gene that change a protein's amino acid sequence, deleting genes or chromosomal segments, and inserting foreign DNA at precise genomic locations. Such targeted DNA sequence modifications are enabled by sequence-specific nucleases that create double-strand breaks in the genomic loci to be altered. The repair of the breaks, through either homologous recombination or nonhomologous end joining, can be controlled to achieve the desired sequence modification. Genome engineering promises to advance basic plant research by linking DNA sequences to biological function. Further, genome engineering will enable plants' biosynthetic capacity to be harnessed to produce the many agricultural products required by an expanding world population.

Từ khóa


Tài liệu tham khảo

10.1126/science.1086391

10.1186/1472-6750-12-86

3. Ayhan A, Wehrkamp-Richter S, Laffaire JB, Le Goff S, Levy J, et al. 2013. Gene targeting in maize by somatic ectopic recombination. Plant Biotechnol. J. In press. doi: 10.1111/pbi.12014

10.1038/nbt796

10.1128/MCB.10.2.492

10.1073/pnas.0810475105

10.1126/science.1079512

10.1146/annurev-phyto-080508-081936

10.1126/science.1178811

10.1126/science.1204094

10.1534/genetics.109.101329

10.1093/nar/gks624

10.1093/nar/gks199

10.1177/1087057110375115

10.1007/s11103-008-9449-7

10.1534/genetics.111.131433

10.1093/nar/gkr218

10.1038/nmeth.2177

10.1038/nmeth.1653

10.1104/pp.103.026104

10.1534/genetics.110.120717

10.1371/journal.pone.0045383

10.1038/ncomms1962

10.3835/plantgenome2012.06.0008

10.1104/pp.111.172981

10.1093/nar/gks268

10.1371/journal.pone.0023981

10.1101/gad.849600

10.1126/science.1215670

10.1111/j.1467-7652.2009.00446.x

10.1038/nbt1409

10.1038/nmeth.1539

10.1128/MCB.18.1.93

10.1111/j.1365-313X.2011.04741.x

10.1073/pnas.0712060105

10.1073/pnas.1202191109

10.1111/j.1365-313X.2011.04896.x

10.1038/nbt.1948

10.1038/nmeth.2030

10.1111/j.1365-313X.2009.04041.x

10.1093/embo-reports/kve069

10.1093/nar/25.22.4650

10.1016/j.jmb.2007.01.017

10.1093/nar/gkp548

Halfter U, 1992, Mol. Gen. Genet., 231, 186, 10.1007/BF00279790

10.1104/pp.104.041061

10.1038/nbt1362

10.1016/S0092-8674(85)80011-8

10.1016/j.tplants.2007.03.008

10.1126/science.1144956

10.1101/gr.138792.112

10.1073/pnas.93.3.1156

10.1101/gr.099747.109

10.1101/gr.129635.111

10.1105/tpc.2.5.415

10.1007/s11103-012-9875-4

10.1093/nar/gkq704

10.1038/nbt.2199

10.1073/pnas.0409339102

10.1038/nbt1353

10.1016/j.molcel.2008.06.016

10.1073/pnas.1019533108

10.1126/science.1216211

64. Maresca M, Lin VG, Guo N, Yang Y. 2013. Obligate Ligation-Gated Recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. 23:539–46

10.1104/pp.110.164806

10.1038/74542

10.1016/j.tig.2008.08.007

10.1093/nar/gks875

10.1046/j.1365-313X.1995.7020359.x

10.1038/nbt1319

10.1038/nbt.1755

10.1073/pnas.0611478104

10.1002/bit.10483

10.1126/science.1178817

10.1093/nar/gkr597

76. Nishizawa-Yokoi A, Nonaka S, Saika H, Kwon YI, Osakabe K, Toki S. 2012. Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol. 196:1048–59

10.1002/j.1460-2075.1990.tb07504.x

10.1046/j.1365-313X.2003.01832.x

10.1093/nar/gkq512

10.1073/pnas.1000234107

10.1534/genetics.106.065185

10.2174/156652307779940216

10.1038/nmeth.1670

10.1007/s11103-010-9641-4

Puchta H, 1999, Genetics, 152, 1173, 10.1093/genetics/152.3.1173

10.1093/jxb/eri123

10.1093/nar/21.22.5034

10.1073/pnas.93.10.5055

10.1101/gr.145557.112

10.1073/pnas.91.5.1706

10.1093/nar/gks179

10.1038/nmeth0508-374

10.1073/pnas.97.7.3358

10.1038/nbt.2170

10.1128/MCB.20.23.9068-9075.2000

10.1126/science.1144958

10.1073/pnas.91.13.6064

10.1093/emboj/17.20.6086

10.1038/nmeth.1542

10.1038/nprot.2011.431

10.1105/tpc.105.039834

10.1021/bi026806o

10.1073/pnas.0502601102

Shalev G, 1997, Genetics, 146, 1143, 10.1093/genetics/146.3.1143

10.1073/pnas.96.13.7398

10.1038/nature07992

10.1105/tpc.001727

10.1093/nar/gkl720

10.1016/j.str.2010.12.003

10.1038/nbt.2304

10.1039/c2mb05461b

10.1002/j.1460-2075.1994.tb06283.x

10.1038/nbt1317

10.1038/nbt737

10.1023/A:1005865600319

10.1111/j.1365-313X.2008.03718.x

10.1038/nature07845

10.1104/pp.103.032128

10.1074/jbc.M112.379966

10.1074/jbc.C112.408864

10.1101/gr.122879.111

10.1002/j.1460-2075.1988.tb02983.x

10.1105/tpc.108.060525

10.1073/pnas.95.23.13959

10.1111/j.1469-8137.2011.03926.x

10.1111/j.1365-313X.2005.02551.x

10.1038/nbt.1775

10.1073/pnas.0914991107

10.1104/pp.112.205179

10.1104/pp.111.192856