Planning and carrying out investigations: an entry to learning and to teacher professional development around NGSS science and engineering practices

Richard A. Duschl1, Rodger W. Bybee2
1College of Education, Penn State University, University Park, USA
2BSCS, Golden, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bruner J: The psychology of learning: A short history. Daedalus, Winter; 2004.

Bybee R: The BSCS 5E Instructional Model: Creating Teachable Moments. VA. The NSTA Press, Arlington; 2015.

Carey S, Smith C: On understanding the nature of scientific knowledge. Educational Psychologist 1993, 28: 235–251. 10.1207/s15326985ep2803_4

Carey S, Evans R, Honda M, Jay E, Unger C: An experiment is when you try it and see if it works: a study of grade 7 students’. Understanding of the construction of scientific knowledge. International Journal of Science Education 1989, 11: 514–529. 10.1080/0950069890110504

Driver R, Leach J, Millar R, Scott P: Young People’s Images of Science. Open University Press, Buckingham, England; 1996.

Duschl R: Assessment of Inquiry. In Everday Assessment in Science Classrooms. Edited by: Atkin JM, Coffey J. NSTA Press, Washington, DC; 2003.

Duschl R: Science education in 3 part harmony: Balancing conceptual, epistemic and social learning goals. Review of Research in Education 2008, 32: 268–291. 10.3102/0091732X07309371

Duschl R, Gitomer D: Strategies and challenges to changing the focus of assessment and instruction in science classrooms. Educational Assessment 1997, 4: 37–73. 10.1207/s15326977ea0401_2

Engle RA, Conant FC: Guiding principles for fostering productive disciplinary engagement: explaining an emergent argument in a community of learner’s classroom. Cognition and Instruction 2002,20(4):399–483. 10.1207/S1532690XCI2004_1

Ford M: ‘Grasp of practice’ as a reasoning resource for inquiry and nature of science understanding. Science & Education 2008, 17: 147–177. 10.1007/s11191-006-9045-7

Gitomer D, Duschl R: Establishing multi-level coherence in assessment. In Evidence and decision making, NSSE 2007 Yearbook, V106 Edited by: Moss P. 2007, 288–320.

Gotwals A, Songer N: Validity evidence for learning progression-based assessment items that fuse core disciplinary ideas and science practices. Journal of Research in Science Teaching 2013,50(5):597–626. 10.1002/tea.21083

Grosslight L, Unger C, Jay E, Smith C: Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching 1991, 28: 799–822. 10.1002/tea.3660280907

Lehrer R, Schauble L: Inventing data structures for representational purposes: elementary grade students’ classification models. Mathematical Thinking and Learning 2000, 2: 49–72. 10.1207/S15327833MTL0202_3

Lehrer, R, & Schauble, L (Eds.) Investigating real data in the classroom: expanding children’s understanding of math and science. Teachers College Press, New York; 2002.

Lehrer R, Schauble L, Lucas D: Supporting development of the epistemology of inquiry. Cognitive Development 2008,23(4):512–529. 10.1016/j.cogdev.2008.09.001

National Research Council: America’s Lab Report: Investigations in High School Science. The National Academies Press, Washington, DC; 2006.

National Research Council: Taking science to school: learning and teaching science kindergarten to eighth grade. National Academy Press, Washington, DC; 2007.

National Academy of Education (2009). Education Policy White Paper on Teacher Quality. S. Wilson (Ed.). Washington, DC: Author.

National Research Council (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards (Board on Science Education, Division of Behavioral and Social Sciences and Education). Washington, DC: The National Academies Press.

NGSS Lead States: Next Generation Science Standards: For States, By States. The National Academies Press, Washington, DC; 2013.

Sawyer, K (Ed.) Cambridge Handbook of the Learning Sciences. 2nd edition. Cambridge University Press, London; 2014.

Scott T, Schroeder H, Huang T-H, Williams O: A longitudinal study of a 5th grade science curriculum based on the 5E model. Science Educator 2014,23(1):49–55.

Smith CL, Wenk L: Relations among three aspects of first-year college students’ epistemologies of science. Journal of Research in Science Teaching 2006, 43: 747–785. 10.1002/tea.20113

Smith C, Maclin D, Houghton C, Hennessey MG: Sixth-grade students’ epistemologies of science: the impact of school science experience on epistemological development. Cognition and Instruction 2000,18(3):285–316. 10.1207/S1532690XCI1803_3

Songer NB, Kelcey B, Gotwals AW: How and when does complex reasoning occur? Empirically driven development of a learning progression focused on complex reasoning about biodiversity. Journal of Research in Science Teaching 2009,46(6):610–631. 10.1002/tea.20313

Taylor, J, Getty, S, Kowalski, C, Wilson, J, Carlson, J, & Van Scotter, P (2015). An efficacy trial of research-based curriculum materials with curriculum-based professional development. Accepted for publication. American Educational Research Journal.

Wellington J, Osborne J: Language and Literacy in Science Education. Open University Press, London; 2001.

Wilson CD, Taylor JA, Kowalski SM, Carlson J: The relative effects and equity of inquiry-based and commonplace science teaching on students’ knowledge, reasoning, and argumentation. Journal of Research in Science Teaching 2010,47(3):276–301.

Windschitl M, Thompson J, Braaten M: Ambitious Pedagogy by Novice Teachers? Who Benefits From Tool-Supported Collaborative Inquiry into Practice and Why. Teachers College Record 2011,113(7):1311–1360.

Windschitl M, Thompson J, Braaten M, Stroupe D: Proposing a Core Set of Instructional Practices and Tools for Teachers of Science. Science Education 2012,96(5):878–903. 10.1002/sce.21027