Planning and carrying out investigations: an entry to learning and to teacher professional development around NGSS science and engineering practices
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bruner J: The psychology of learning: A short history. Daedalus, Winter; 2004.
Bybee R: The BSCS 5E Instructional Model: Creating Teachable Moments. VA. The NSTA Press, Arlington; 2015.
Carey S, Smith C: On understanding the nature of scientific knowledge. Educational Psychologist 1993, 28: 235–251. 10.1207/s15326985ep2803_4
Carey S, Evans R, Honda M, Jay E, Unger C: An experiment is when you try it and see if it works: a study of grade 7 students’. Understanding of the construction of scientific knowledge. International Journal of Science Education 1989, 11: 514–529. 10.1080/0950069890110504
Driver R, Leach J, Millar R, Scott P: Young People’s Images of Science. Open University Press, Buckingham, England; 1996.
Duschl R: Assessment of Inquiry. In Everday Assessment in Science Classrooms. Edited by: Atkin JM, Coffey J. NSTA Press, Washington, DC; 2003.
Duschl R: Science education in 3 part harmony: Balancing conceptual, epistemic and social learning goals. Review of Research in Education 2008, 32: 268–291. 10.3102/0091732X07309371
Duschl R, Gitomer D: Strategies and challenges to changing the focus of assessment and instruction in science classrooms. Educational Assessment 1997, 4: 37–73. 10.1207/s15326977ea0401_2
Engle RA, Conant FC: Guiding principles for fostering productive disciplinary engagement: explaining an emergent argument in a community of learner’s classroom. Cognition and Instruction 2002,20(4):399–483. 10.1207/S1532690XCI2004_1
Ford M: ‘Grasp of practice’ as a reasoning resource for inquiry and nature of science understanding. Science & Education 2008, 17: 147–177. 10.1007/s11191-006-9045-7
Gitomer D, Duschl R: Establishing multi-level coherence in assessment. In Evidence and decision making, NSSE 2007 Yearbook, V106 Edited by: Moss P. 2007, 288–320.
Gotwals A, Songer N: Validity evidence for learning progression-based assessment items that fuse core disciplinary ideas and science practices. Journal of Research in Science Teaching 2013,50(5):597–626. 10.1002/tea.21083
Grosslight L, Unger C, Jay E, Smith C: Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching 1991, 28: 799–822. 10.1002/tea.3660280907
Lehrer R, Schauble L: Inventing data structures for representational purposes: elementary grade students’ classification models. Mathematical Thinking and Learning 2000, 2: 49–72. 10.1207/S15327833MTL0202_3
Lehrer, R, & Schauble, L (Eds.) Investigating real data in the classroom: expanding children’s understanding of math and science. Teachers College Press, New York; 2002.
Lehrer R, Schauble L, Lucas D: Supporting development of the epistemology of inquiry. Cognitive Development 2008,23(4):512–529. 10.1016/j.cogdev.2008.09.001
National Research Council: America’s Lab Report: Investigations in High School Science. The National Academies Press, Washington, DC; 2006.
National Research Council: Taking science to school: learning and teaching science kindergarten to eighth grade. National Academy Press, Washington, DC; 2007.
National Academy of Education (2009). Education Policy White Paper on Teacher Quality. S. Wilson (Ed.). Washington, DC: Author.
National Research Council (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards (Board on Science Education, Division of Behavioral and Social Sciences and Education). Washington, DC: The National Academies Press.
NGSS Lead States: Next Generation Science Standards: For States, By States. The National Academies Press, Washington, DC; 2013.
Sawyer, K (Ed.) Cambridge Handbook of the Learning Sciences. 2nd edition. Cambridge University Press, London; 2014.
Scott T, Schroeder H, Huang T-H, Williams O: A longitudinal study of a 5th grade science curriculum based on the 5E model. Science Educator 2014,23(1):49–55.
Smith CL, Wenk L: Relations among three aspects of first-year college students’ epistemologies of science. Journal of Research in Science Teaching 2006, 43: 747–785. 10.1002/tea.20113
Smith C, Maclin D, Houghton C, Hennessey MG: Sixth-grade students’ epistemologies of science: the impact of school science experience on epistemological development. Cognition and Instruction 2000,18(3):285–316. 10.1207/S1532690XCI1803_3
Songer NB, Kelcey B, Gotwals AW: How and when does complex reasoning occur? Empirically driven development of a learning progression focused on complex reasoning about biodiversity. Journal of Research in Science Teaching 2009,46(6):610–631. 10.1002/tea.20313
Taylor, J, Getty, S, Kowalski, C, Wilson, J, Carlson, J, & Van Scotter, P (2015). An efficacy trial of research-based curriculum materials with curriculum-based professional development. Accepted for publication. American Educational Research Journal.
Wellington J, Osborne J: Language and Literacy in Science Education. Open University Press, London; 2001.
Wilson CD, Taylor JA, Kowalski SM, Carlson J: The relative effects and equity of inquiry-based and commonplace science teaching on students’ knowledge, reasoning, and argumentation. Journal of Research in Science Teaching 2010,47(3):276–301.
Windschitl M, Thompson J, Braaten M: Ambitious Pedagogy by Novice Teachers? Who Benefits From Tool-Supported Collaborative Inquiry into Practice and Why. Teachers College Record 2011,113(7):1311–1360.