Place learning in virtual space III: Investigation of spatial navigation training procedures and their application to fMRI and clinical neuropsychology
Tóm tắt
This paper describes the utilization of a desktop virtual environment task, the Computer-Generated (C-G) Arena, in the study of human spatial navigation. First, four experiments examined the efficacy of various training procedures in the C-G Arena. In Experiment 1, participants efficiently located a hidden target after only observing the virtual environment from a fixed position (placement learning). In Experiment 2, participants efficiently located a hidden target after only observing an experimenter search the virtual environment (observational learning). In Experiment 3, participants failed to display alatent learning effect in the virtual environment. In Experiment 4, all training procedures effectively taught participants the layout of the virtual environment, but the observational learning procedure most effectivelytaught participants the location of a hidden target within the environment. Finally, two experiments demonstrated the application of C-G Arena procedures to neuroimaging (Experiment 5) and neuropsychological (Experiment 6) investigations of human spatial navigation.
Tài liệu tham khảo
Abrahams, S., Pickering, A., Polkey, C. E., &Morris, R. G. M. (1997). Spatial memory deficits in patients with unilateral damage to the right hippocampal formation.Neuropsychologia,35, 11–24.
Arthur, E. J., Hancock, P. A., &Chrysler, S. T. (1997). The perception of spatial layout in real and virtual worlds.Ergonomics,40, 69–77.
Astur, R. S., Ortiz, M. L., &Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: A large and reliable sex difference.Behavioural Brain Research,93, 185–190.
Attree, E. A., Brooks, B. M., Rose, F. D., Andrews, T. K., Lead-better, A. G., &Clifford, B. R. (1996). Memory processes and virtual environments: I can’t remember what was there, but I can remember how I got there. Implications for people with disabilities. In P. M. Sharkey (Ed.),Proceedings of the 1st European Conference on Disability, Virtual Reality, and Associated Technologies (pp. 117–121). Maidenhead, U.K.: University of Reading.
Aukstakalnis, S., &Blatner, D. (1992).Siliconmirage: The art and science of virtual reality. Berkeley, CA: Peachpit.
Baker, C. B., Hsu, M., Ryan, T. L., Nadel, L., & Jacobs, W. J. (1998, December).Functional neuro imaging of place learning in computer-generated space. Poster presented at the annual meeting of the Robert S. Flinn Foundation Life Science and Biomedical Research Symposium, Tucson, AZ.
Barfield, W., &Furness, T. A., III (Eds.) (1995).Virtual environments and advanced interface design. New York: Oxford University Press.
Bednekoff, P. A., &Balda, R. P. (1996). Observational spatial memory in Clark’s nutcrackers and Mexican jays.Animal Behaviour,52, 833–839.
Bliss, J. P., Tidwell, P. D., &Guest, M. A. (1997). The effectiveness of virtual reality for admini stering spatial navigation training to firefighters.Presence,6, 73–86.
Blodgett, H. C. (1929). The effect of introduction of reward upon the maze learning of rats.University of California Publications in Psychology,4, 113–134.
Bohbot, V. D., Kalina, M., Stepankova, K., Spackova, N., Petrides, M., &Nadel, L. (1998). Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahip-pocampal cortex.Neuropsychologia,36, 1217–1238.
Brandeis, R., Brandys, Y., &Yehuda, S. (1989). The use of the Morris water maze in the study of memory and learning.International Journal of Neuroscience,48, 29–69.
Brooks, B. M., McNeil, J. E., Rose, F. D., Greenwood, R. J., Attree, E. A., &Leadbetter, A. G. (1999). Route learning in a case of amnesia: A preliminary investigation into the efficacy of training in a virtual environment.Neuropsychological Rehabilitation,9, 63–76.
Cox, R. W., &Hyde, J. S. (1997). Software tools for analysis and visualization of fMRI data.NMR in Biomedicine,10, 171–178.
Dabrowska, J. (1963a). An analysis of reversal learning in relation to the complexity of task in white rats.Acta Biologica Experimentalis,23, 11–24.
Dabrowska, J. (1963b). Reversal learning in relation to the pattern of reversal in a three-unit double-choice apparatus.Acta Biologica Experimentalis,23, 263–266.
Darby, C. L., &Riopelle, A. J. (1959). Observational learning in the rhesus monkey.Journal of Comparative & Physiological Psychology,52, 94–98.
Fenton, A. A., Arolfo, M. P., Nerad, L., &Bureš, J. (1994). Place navigation in the Morris water maze under minimum and redundant extra-maze cue conditions.Behavioral & Neural Biology,62, 178–189.
Furness, T. A., III, &Barfield, W. (1995). Introduction to virtual environments and advanced interface design. In W. Barfield & T. A. Furness III (Eds.),Virtual environments and advanced interface design (pp. 3–13). New York: Oxford University Press.
Gillner, S., &Mallot, H. A. (1998). Navigation and acquisition of spatial knowledge in a virtual maze.Journal of Neuroscience,10, 445–463.
Heyes, C. M., &Dawson, G. R. (1990). A demonstration of observational learning in rats using a bidirectional control.Quarterly Journal of Experimental Psychology,42B, 59–71.
Heyes, C. M., Jaldow, E., &Dawson, G. R. (1994). Imitation in rats: Conditions of occurrence in a bidirectional control procedure.Learning & Motivation,25, 276–287.
Hsu, M., Ryan, T. L., Nadel, L., Thomas, K. G. F., & Jacobs, W. J. (2001).Functional neuroimaging of place learning in computer-generated space. Manuscript in preparation.
Jacobs, W. J., Laurance, H. E., &Thomas, K. G. F. (1997). Place learning in virtual space I: Acquisition, overshadowing, and transfer.Learning & Motivation,28, 521–541.
Jacobs, W. J., Thomas, K. G. F., Laurance, H. E., &Nadel, L. (1998). Place learning in virtual space II: Topographical relations as one dimension of stimulus control.Learning & Motivation,29, 288–308.
Kállai, J., Jacobs, W. J., Karádi, K., Thomas, K. G. F., & Nadel, L. (2001).The role of spatial orientation disturbances in maintenance of panic disorder with agoraphobia. Manuscript in preparation.
Keith, J. R., &McVety, K. M. (1988). Latent place learning in a novel environment and the influences of prior training in rats.Psychobiology,16, 146–151.
Kimble, G. A. (1961).Hilgard and Marquis’ conditioning and learning. New York: Appleton-Century-Crofts.
Laurance, H. E., Thomas, K. G. F., Newman, M. C., Kaszniak, A. W., Rubin, S. R., Nadel, L., & Jacobs, W. J. (2001).Age-related changes inplace learning. Manuscript in preparation.
Mackintosh, N. J. (1974).The psychology of animal learning. London: Academic Press.
Maguire, E. A., Burgess, N., Donnett, J. G., Frackowiak, R. S. J., Frith, C. D., &O’Keefe, J. (1998). Knowing where and getting there: A human navigation network.Science,280, 921–924.
Maguire, E. A., Burgess, N., &O’Keefe, J. (1999). Human spatial navigation: Cognitive maps, sexual dimorphism, and neural substrates.Current Opinion in Neurobiology,9, 171–177.
Maguire, E. A., Frackowiak, R. S. J., &Frith, C. D. (1997). Recalling routes around London: Activation of the right hippocampus in taxi drivers.Journal of Neuroscience,17, 7103–7110.
May, M., Péruch, P., &Savoyant, A. (1995). Navigating in a virtual environment with map-acquired knowledge: Encoding and alignment effects.Ecological Psychology,7, 21–36.
McComas, J., Pivik, J.,& Laflamme, M. (1998). Children’s transfer of spatial learning from virtual reality to real environments.CyberPsychology & Behavior,1, 121–128.
McNaughton, B. L. (1989). Neuronal mechanisms for spatial computation and information storage. In L. Nadel, L. A. Cooper, P. Culicover, & R. M. Harnish (Eds.),Neural connections, mental computation (pp. 285–350). Cambridge, MA: MIT Press.
McNaughton, B. L., Barnes, C. A., Gerrard, J. L., Gothard, K., Jung, M. W., Knierim, J. J., Kudrimoti, H., Oin, Y., Skaggs, W. E., Suster, M., &Weaver, K. L. (1996). Deciphering the hippocampal polyglot: The hippocampus as a path integration system.Journal of Experimental Biology,199, 173–185.
Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues.Learning & Motivation,12, 239–260.
Morris, R. G. M. (1984). Developments of a water-maze procedure for studying spatial learning in the rat.Journal of Neuroscience Methods,11, 47–60.
Muenzinger, K. F., &Conrad, D. G. (1953). Latent learning observed through negative transfer.Journal of Comparative & Physiological Psychology,46, 1–8.
Munn, N. L. (1950).Handbook of psychological research on the rat. Boston: Houghton Mifflin.
Nadel, L. (1991). Hippocampus and space revisited.Hippocampus,1, 221–229.
Nadel, L., Thomas, K. G. F., Laurance, H. E., Skelton, R., Tal, T., &Jacobs, W. J. (1998). Human place learning in a computer generated arena. In C. Freksa, C. Habel, & K. F. Wender (Eds.),Spatial cognition: An interdisciplinary approach to representing and processing spatial knowledge (pp. 399–427). Berlin: Springer-Verlag.
O’Keefe, J., &Nadel, L. (1978).The hippocampusas a cognitive map. Oxford: Oxford University Press, Clarendon Press.
Péruch, P., Vercher, J.-L., &Gauthier, G. M. (1995). Acquisition of spatial knowledge through visual exploration of simulated environments.Ecological Psychology,7, 1–20.
Pimentel, K., &Teixiera, K. (1995).Virtual reality: Through the new looking glass. Toronto: McGraw-Hill.
Pugnetti, L., Mendozzi, L., Brooks, B. M., Attree, E. A., Barbieri, E., Alpini, D., Motta, A., &Rose, F. D. (1998). Active versus passive exploration of virtual environments modulates spatial memory in MS patients: A yoked control study.Italian Journal of Neurological Sciences,19, S424-S430.
Rizzo, A., Buckwalter, J. G., Neumann, U., Kesselman, C., &Thiebaux, M. S. (1998). Basic issues in the application of virtual reality for the assessment and rehabilitation of cognitive impairments and functional disabilities.CyberPsychology & Behavior,1, 59–78.
Rose, F. D., Attree, E. A., &Johnson, D. A. (1996). Virtual reality: An assistive technology in neurologicalrehabilitation.Current Opinion in Neurology,9, 461–467.
Ruddle, R. A., Payne, S. J., &Jones, D. M. (1997). Navigating buildings in “desk-top” virtual environments: Experimental investigations using extended navigational experience.Journal of Experimental Psychology: Applied,3, 143–159.
Sandstrom, N. J., Kaufman, J., &Huettel, S. A. (1998). Males and females use different distal cues in a virtual environment navigation task.Cognitive Brain Research,6, 351–360.
Skelton, R. W., Bukach, C., Laurance, H. E., Thomas, K. G. F., &Jacobs, W. J. (2000). Humans with traumatic brain injuries show place-learning deficits in computer-generated virtual space.Journal of Clinical & Experimental Neuropsychology,22, 157–175.
Sutherland, R. J., &Linggard, R. C. (1982). Being there: A novel demonstration of latent spatial learning in the rat.Behavioral & Neural Biology,36, 103–107.
Suzuki, S., Augerinos, G., &Black, A. H. (1980). Stimulus control of spatial behavior in the eight-arm maze in rats.Learning & Motivation,11, 1–18.
Thomas, K. G. F., Laurance, H. E., Luczak, S. E., &Jacobs, W. J. (1999). Age-related changes in a human cognitive mapping system: Data from a computer-generated environment.CyberPsychology & Behavior,2, 545–566.
Tlauka, M., &Wilson, P. N. (1996). Orientation-free representations from navigation through a computer-simulated environment.Environment & Behavior,28, 647–664.
Tolman, E. C. (1938). The determiners of behavior at a choice point.Psychological Review,45, 1–41.
Tolman, E. C. (1948). Cognitive maps in rats and men.Psychological Review,55, 189–208.
Wilson, P. (1997). Use of virtual reality computing in spatial learning research. In N. Foreman & N. Gillett (Eds.),Handbook of spatial research paradigms and methodologies: Vol. I. Spatial cognition in the child and adult (pp. 181–206). Hove, U.K.: Psychology Press.
Wilson, P., Foreman, N., &Tlauka, M. (1997). Transfer of spatial information from a virtual to a real environment.Human Factors,39, 526–531.
Zentall, T. R., Sutton, J. E., &Sherburne, L. M. (1996). True imitative learning in pigeons.Psychological Science,7, 343–346.