Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Peptit MPAPO từ Peptit Kích hoạt Cyclase Adenylate Tuyến Yên (PACAP) Kích thích Sự Phân Hoá Mỡ bằng cách Điều Chỉnh Giai Đoạn Đầu của Quá Trình Phân Hoá Mỡ và Đường Dẫn Tin ERK
Tóm tắt
Y học tái tạo và kỹ thuật mô đã mang lại những khả năng chữa lành mới cho việc điều trị các tổn thương mô mềm, nhưng việc lựa chọn tế bào hạt giống là điều rất quan trọng cho quá trình điều trị. Tế bào gốc có nguồn gốc từ mô mỡ luôn là lựa chọn hàng đầu cho tế bào hạt giống nhờ vào nguồn cung dồi dào, khả năng tiếp cận dễ dàng, tính linh hoạt cao và khả năng gia tăng giá trị mạnh mẽ. Cách cải thiện hiệu quả phân hoá mỡ chính là chìa khóa cho việc điều trị. Peptit kích hoạt cyclase adenylate tuyến yên, như một peptit hoạt tính sinh học được tiết ra bởi tuyến yên, tham gia rộng rãi vào việc điều chỉnh sự trao đổi chất của đường và lipid trong cơ thể. Tuy nhiên, hiệu ứng của MPAPO trong sự phân hoá mỡ của tế bào gốc mô mỡ (ADSCs) vẫn chưa được biết đến. Kết quả của chúng tôi cho thấy rằng điều trị bằng MPAPO cải thiện hiệu quả phân hoá mỡ của ADSCs, bao gồm việc thúc đẩy sự tích tụ của giọt lipid và triglyceride, cùng với sự biểu hiện của các biomarker protein tế bào mỡ PPARγ và C/EBPa. Thêm vào đó, các nghiên cứu cơ chế cho thấy rằng khoảng thời gian hiệu quả của quá trình tạo mỡ do MPAPO gây ra là 3 ngày đầu trong quá trình phân hoá của ADSCs. MPAPO liên kết chọn lọc với thụ thể PAC1 và thúc đẩy sự phân hoá mỡ của ADSCs bằng cách kích hoạt con đường tín hiệu ERK và nâng cao sự sinh sản tế bào trong giai đoạn phân bào sau khi được kết nối. Tóm lại, chúng tôi chứng minh rằng MPAPO đóng một vai trò quan trọng trong quá trình tạo mỡ của ADSCs, cung cấp cơ sở và dữ liệu thực nghiệm cho việc khám phá các lựa chọn điều trị trong việc sửa chữa tổn thương mô.
Từ khóa
#Y học tái tạo #kỹ thuật mô #tế bào gốc mô mỡ #phân hoá mỡ #peptit kích hoạt cyclase adenylate tuyến yên #con đường tín hiệu ERKTài liệu tham khảo
Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7, 211–228.
Gimble, J., & Guilak, F. (2003). Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 5, 362–369.
Raposio, E., Bertozzi, N., Bonomini, S., Bernuzzi, G., Formentini, A., Grignaffini, E., et al. (2016). Adipose-derived Stem Cells Added to Platelet-rich Plasma for Chronic Skin Ulcer Therapy. Wounds, 28, 126–131.
Caruana, G., Bertozzi, N., Boschi, E., Pio Grieco, M., Grignaffini, E., & Raposio, E. (2015). Role of adipose-derived stem cells in chronic cutaneous wound healing. Annali Italiani di Chirurgia, 86, 1–4.
Murphy, J. M., Fink, D. J., Hunziker, E. B., & Barry, F. P. (2003). Stem cell therapy in a caprine model of osteoarthritis. Arthritis and Rheumatism, 48, 3464–3474.
Argentati, C., Morena, F., Bazzucchi, M., Armentano, I., Emiliani, C., Martino, S. (2018). Adipose Stem Cell Translational Applications: From Bench-to-Bedside. International journal of molecular sciences, 19, 3475.
Feisst, V., Meidinger, S., & Locke, M. B. (2015). From bench to bedside: use of human adipose-derived stem cells. Stem Cells Cloning, 8, 149–162.
Morena, F., Argentati, C., Calzoni, E., Cordellini, M., Emiliani, C., D’Angelo, F., et al. (2016). Ex-vivo tissues engineering modeling for reconstructive surgery using human adult adipose stem cells and polymeric nanostructured matrix. Nanomaterials (Basel), 6, 57.
Rosen, E. D., & Spiegelman, B. M. (2006). Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 444, 847–853.
Lee, J. E., Schmidt, H., Lai, B., & Ge, K. (2019). Transcriptional and epigenomic regulation of adipogenesis. Molecular and Cellular Biology, 39, e00601–00618.
Ross, S. E., Hemati, N., Longo, K. A., Bennett, C. N., Lucas, P. C., Erickson, R. L., et al. (2000). Inhibition of adipogenesis by Wnt signaling. Science, 289, 950–953.
Lagathu, C., Christodoulides, C., Tan, C. Y., Virtue, S., Laudes, M., Campbell, M., et al. (2010). Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity. International Journal of Obesity, 34, 1695–1705.
Vujovic, S., Henderson, S. R., Flanagan, A., & Clements, M. O. (2007). Inhibition of γ-secretases alters both proliferation and differentiation of mesenchymal stem cells. Cell Proliferation, 40, 185–195.
Song, B., Chi, Y., Li, X., Du, W., Han, Z. B., Tian, J., et al. (2015). Inhibition of Notch signaling promotes the adipogenic differentiation of mesenchymal stem cells through autophagy activation and PTEN-PI3K/AKT/mTOR pathway. Cellular Physiology and Biochemistry, 36, 1991–2002.
Bowers, R. R., & Lane, M. D. (2007). A role for bone morphogenetic protein-4 in adipocyte development. Cell Cycle, 6, 385–389.
Bowers, R. R., Kim, J. W., Otto, T. C., & Lane, M. D. (2006). Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proceedings of the National Academy of Sciences, 103, 13022–13027.
James, A. W. (2013). Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo), 2013, 684736.
Prusty, D., Park, B. H., Davis, K. E., & Farmer, S. R. (2002). Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor γ (PPARγ) and C/EBPα gene expression during the differentiation of 3T3-L1 preadipocytes. Journal of Biological Chemistry, 277, 46226–46232.
Patel, A. L., & Shvartsman, S. Y. (2018). Outstanding questions in developmental ERK signaling. Development, 145, dev143818.
Asrih, M., Mach, F., Nencioni, A., Dallegri, F., Quercioli, A., & Montecucco, F. (2013). Role of mitogen-activated protein kinase pathways in multifactorial adverse cardiac remodeling associated with metabolic syndrome. Mediators of Inflammation, 2013, 367245.
Bost, F., Aouadi, M., Caron, L., Even, P., Belmonte, N., Prot, M., et al. (2005). The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes, 54, 402–411.
Ling, H. Y., Wen, G. B., Feng, S. D., Tuo, Q. H., & Liao, D. F. (2011). MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signaling. Clinical & Experimental Pharmacology & Physiology, 38, 239.
Kwak, D. H., Lee, J. H., Kim, T., Ahn, H. S., Cho, W. K., Ha, H., et al. (2012). Aristolochia manshuriensis Kom inhibits adipocyte differentiation by regulation of ERK1/2 and Akt pathway. PLoS One1, 7, e49530.
Miyata, A., Arimura, A., Dahl, R. R., Minamino, N., Uehara, A., Jiang, L., et al. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochemical And Biophysical Research Communications, 164, 567–574.
Shen, S., Gehlert, D. R., & Collier, D. A. (2013). PACAP and PAC1 receptor in brain development and behavior. Neuropeptides, 47, 421–430.
Rudecki, A. P., & Gray, S. L. (2016). PACAP in the defense of energy homeostasis. Trends in Endocrinology and Metabolism, 27, 620–632.
Li, M., Maderdrut, J. L., Lertora, J. J., & Batuman, V. (2007). Intravenous infusion of pituitary adenylate cyclase-activating polypeptide (PACAP) in a patient with multiple myeloma and myeloma kidney: a case study. Peptides, 28, 1891–1895.
Zhu, L., Tamvakopoulos, C., Xie, D., Dragovic, J., Shen, X., Fenyk-Melody, J. E., et al. (2003). The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1–38). Journal of Biological Chemistry, 278, 22418–22423.
Ma, Y., Zhao, S., Wang, X., Shen, S., Ma, M., Xu, W., et al. (2015). A new recombinant PACAP-derived peptide efficiently promotes corneal wound repairing and lacrimal secretion. Investigative Ophthalmology & Visual Science, 56, 4336–4349.
Adams, B. A., Gray, S. L., Isaac, E. R., Bianco, A. C., Vidal-Puig, A. J., & Sherwood, N. M. (2008). Feeding and metabolism in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology, 149, 1571–1580.
Arsenijevic, T., Gregoire, F., Chiadak, J., Courtequisse, E., Bolaky, N., Perret, J., et al. (2013). Pituitary adenylate cyclase activating peptide (PACAP) participates in adipogenesis by activating ERK signaling pathway. PLoS One, 8, e72607.
Ramírez-Zacarías, J. L., Castro-Muñozledo, F., & Kuri-Harcuch, W. (1992). Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry, 97, 493–497.
Chen, Y., Ikeda, K., Yoneshiro, T., Scaramozza, A., Tajima, K., Wang, Q., et al. (2019). Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature, 565, 180–185.
Wilfling, F., Haas, J. T., Walther, T. C., & Farese, R. V., Jr. (2014). Lipid droplet biogenesis. Current Opinion in Cell Biology, 29, 39–45.
Tang, W., Zeve, D., Suh, J. M., Bosnakovski, D., Kyba, M., Hammer, R. E., et al. (2008). White fat progenitor cells reside in the adipose vasculature. Science, 322, 583–586.
Cristancho, A. G., & Lazar, M. A. (2011). Forming functional fat: a growing understanding of adipocyte differentiation. Nature Reviews Molecular Cell Biology, 12, 722–734.
Tatsuno, I., Uchida, D., Tanaka, T., Saeki, N., Hirai, A., Saito, Y., et al. (2001). Maxadilan specifically interacts with PAC1 receptor, which is a dominant form of PACAP/VIP family receptors in cultured rat cortical neurons. Brain Research, 889, 138–148.
Ruiz-Ojeda, F. J., Rupérez, A. I., Gomez-Llorente, C., Gil, A., & Aguilera, C. M. (2016). Cell models and their application for studying adipogenic differentiation in relation to obesity: a review. International Journal of Molecular Sciences, 17, 1040.
Siersbæk, R., Nielsen, R., & Mandrup, S. (2012). Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends in Endocrinology & Metabolism, 23, 56–64.
Ntambi, J. M., & Young-Cheul, K. (2000). Adipocyte differentiation and gene expression. The Journal of Nutrition, 130, 3122S-3126S.
Lee, J. S., Ha, L., Park, J. H., & Lim, J. Y. (2012). Mechanical stretch suppresses BMP4 induction of stem cell adipogenesis via upregulating ERK but not through downregulating Smad or p38. Biochemical and Biophysical Research Communications, 418, 278–283.
Jin, Y., Zhang, W., Liu, Y., Zhang, M., Xu, L., Wu, Q., et al. (2014). rhPDGF-BB via ERK pathway osteogenesis and adipogenesis balancing in ADSCs for critical-sized calvarial defect repair. Tissue Engineering Part A, 20, 3303–3313.
Mandl, M., Wagner, S. A., Hatzmann, F. M., Mitterberger-Vogt, M. C., Zwierzina, M. E., Mattesich, M., et al. (2019). Sprouty1 is a weight-loss target gene in human adipose stem/progenitor cells that is mandatory for the initiation of adipogenesis. Cell Death & Disease, 10, 1–10.
Boney, C. M., Gruppuso, P. A., Faris, R. A., & Frackelton, A. R. The critical role of Shc in insulin-like growth factor-I-mediated mitogenesis and differentiation in 3T3-L1 preadipocytes. Molecular Endocrinology, 14, 805–813.
Morris, E. J., Jha, S., Restaino, C. R., Dayananth, P., Zhu, H., Cooper, A., et al. (2013). Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discovery, 3, 742–750.
Lindén, A., Hansson, L., Andersson, A., Palmqvist, M., Arvidsson, P., Löfdahl, C. G., et al. (2003). Bronchodilation by an inhaled VPAC(2) receptor agonist in patients with stable asthma. Thorax, 58, 217–221.
Zuk, P. A. (2010). The adipose-derived stem cell: looking back and looking ahead. Molecular Biology Of The Cell, 21, 1783–1787.
Young, D. A., Choi, Y. S., Engler, A. J., & Christman, K. L. (2013). Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials, 34, 8581–8588.
Li, F., Wang, D., Zhou, Y., Zhou, B., Yang, Y., Chen, H., et al. (2008). Protein kinase A suppresses the differentiation of 3T3-L1 preadipocytes. Cell Research, 18, 311–323.
Guo, X., Yu, R., Xu, Y., Lian, R., Yu, Y., Cui, Z., et al. (2016). PAC1R agonist maxadilan enhances hADSC viability and neural differentiation potential. Journal of Cellular And Molecular Medicine, 20, 874–890.
Yokota, C., Kawai, K., Ohashi, S., Watanabe, Y., & Yamashita, K. (1995). PACAP stimulates glucose output from the perfused rat liver. Peptides, 16, 55–60.
Gray, S. L., Cummings, K. J., Jirik, F. R., & Sherwood, N. M. (2001). Targeted disruption of the pituitary adenylate cyclase-activating polypeptide gene results in early postnatal death associated with dysfunction of lipid and carbohydrate metabolism. Molecular Endocrinology, 15, 1739–1747.
Siersbæk, R., Nielsen, R., & Mandrup, S. (2012). Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends in Endocrinology and Metabolism, 23, 56–64.
Ntambi, J. M., & Young-Cheul, K. (2000). Adipocyte differentiation and gene expression. Journal of Nutrition, 130, 3122s–3126s.
Sun, Z., Yang, X., Liu, Q. S., Li, C., Zhou, Q., Fiedler, H., et al. (2019). Butylated hydroxyanisole isomers induce distinct adipogenesis in 3T3-L1 cells. Journal of Hazardous Materials, 379, 120794.
Scott, R. E., Florine, D. L., Wille, J. J., Jr., & Yun, K. (1982). Coupling of growth arrest and differentiation at a distinct state in the G1 phase of the cell cycle: GD. Proceedings of the National Academy of Sciences of the United States of America, 79, 845–849.
Jang, Y. J., Koo, H. J., Sohn, E. H., Kang, S. C., Rhee, D. K., & Pyo, S. (2015). Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways. Food & Function, 6, 2365–2374.
Umek, R. M., & Friedman, A., D. (1991). CCAAT-enhancer binding protein: A component of a differentiation switch. Science, 251, 288–292.
Chen, K., He, H., Xie, Y., Zhao, L., Zhao, S., Wan, X., et al. (2015). miR-125a-3p and miR-483-5p promote adipogenesis via suppressing the RhoA/ROCK1/ERK1/2 pathway in multiple symmetric lipomatosis. Scientific Reports, 5, 11909.
Kusuyama, J., Komorizono, A., Bandow, K., Ohnishi, T., & Matsuguchi, T. (2016). CXCL3 positively regulates adipogenic differentiation. Journal of Lipid Research, 57, 1806–1820.
Bost, F., Aouadi, M., Caron, L., Even, P., Belmonte, N., Prot, M., et al. (2005). The Extracellular Signal-Regulated Kinase Isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes, 54, P402-411.