Pinning of dislocations in disordered alloys: effects of dislocation orientation

Materials Theory - Tập 6 - Trang 1-13 - 2022
Michael Zaiser1, Ronghai Wu2
1Department of Materials Simulation, WW8-Materials Simulation, Friedrich-Alexander Universität Erlangen-Nürnberg, Fürth, Germany
2School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xian, People’s Republic of China

Tóm tắt

The current interest in compositionally complex alloys including so called high entropy alloys has caused renewed interest in the general problem of solute hardening. It has been suggested that this problem can be addressed by treating the alloy as an effective medium containing a random distribution of dilatation and compression centers representing the volumetric misfit of atoms of different species. The mean square stresses arising from such a random distribution can be calculated analytically, their spatial correlations are strongly anisotropic and exhibit long-range tails with third-order power law decay (Geslin and Rodney 2021; Geslin et al. 2021). Here we discuss implications of the anisotropic and long-range nature of the correlation functions for the pinning of dislocations of arbitrary orientation. While edge dislocations are found to follow the standard pinning paradigm, for dislocations of near screw orientation we demonstrate the co-existence of two types of pinning energy minima.

Tài liệu tham khảo

B. Bakó, D. Weygand, M. Samaras, W. Hoffelner, M. Zaiser, Dislocation depinning transition in a dispersion-strengthened steel. Phys. Rev. B. 78(14), 144104 (2008). P. Chauve, T. Giamarchi, P. Le Doussal, Creep and depinning in disordered media. Phys. Rev. B. 62(10), 6241 (2000). S. F. Edwards, D. Wilkinson, The surface statistics of a granular aggregate. Proc. R. Soc. Lond. A. Math. Phys. Sci.381(1780), 17–31 (1982). P. -A. Geslin, D. Rodney, Microelasticity model of random alloys. part i: mean square displacements and stresses. J. Mech. Phys. Solids. 153:, 104479 (2021). P. -A. Geslin, A. Rida, D. Rodney, Microelasticity model of random alloys. part ii: displacement and stress correlations. J. Mech. Phys. Solids. 153:, 104480 (2021). L. B. Ioffe, V. M. Vinokur, Dynamics of interfaces and dislocations in disordered media. J. Phys. C Solid State Phys.20(36), 6149 (1987). R. Kubilay, A. Ghafarollahi, F. Maresca, W. Curtin, High energy barriers for edge dislocation motion in body-centered cubic high entropy alloys. NPJ Comput. Mater.7(1), 1–9 (2021). R. Labusch, A statistical theory of solid solution hardening. Phys. Status Solidi B. 41(2), 659–669 (1970). R. Labusch, Statistische theorien der mischkristallhärtung. Acta Metall.20(7), 917–927 (1972). C. R. LaRosa, M. Shih, C. Varvenne, M. Ghazisaeidi, Solid solution strengthening theories of high-entropy alloys. Mater. Charact.151:, 310–317 (2019). G. P. M. Leyson, W. A. Curtin, L. G. Hector, C. F. Woodward, Quantitative prediction of solute strengthening in aluminium alloys. Nat. Mater.9(9), 750–755 (2010). H. Mughrabi, Self-consistent experimental determination of the dislocation line tension and long-range internal stresses in deformed copper crystals by analysis of dislocation curvatures. Mater. Sci. Eng. A. 309:, 237–245 (2001). G. Péterffy, P. D. Ispanovity, M. E. Foster, X. Zhou, R. B. Sills, Length scales and scale-free dynamics of dislocations in dense solid solutions. Mater. Theory. 4:, 6 (2020). V. Podkuyko, V. Pustovalov, Peculiar mechanical properties of aluminium-magnesium, aluminium-copper and aluminium-zinc alloys at low temperatures. Cryogenics. 18(11), 589–595 (1978). B. Szajewski, F. Pavia, W. Curtin, Robust atomistic calculation of dislocation line tension. Model. Simul. Mater. Sci. Eng.23(8), 085008 (2015). I. Toda-Caraballo, P. E. Rivera-Díaz-del-Castillo, Modelling solid solution hardening in high entropy alloys. Acta Mater.85:, 14–23 (2015). A. Vaid, D. Wei, E. Bitzek, S. Nasiri, M. Zaiser, Pinning of extended dislocations in atomically disordered crystals. arXiv, 2110–12507 (2021). C. Varvenne, G. Leyson, M. Ghazisaeidi, W. Curtin, Solute strengthening in random alloys. Acta Mater.124:, 660–683 (2017). C. Varvenne, A. Luque, W. A. Curtin, Theory of strengthening in fcc high entropy alloys. Acta Mater.118:, 164–176 (2016). Z. Wu, Y. Gao, H. Bei, Thermal activation mechanisms and labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Mater.120:, 108–119 (2016). M. Zaiser, Dislocation motion in a random solid solution. Phil. Mag. A. 82(15), 2869–2883 (2002). S. Zapperi, M. Zaiser, Depinning of a dislocation: the influence of long-range interactions. Mater. Sci. Eng. A. 309(2), 348–351 (2001). J. -H. Zhai, M. Zaiser, Properties of dislocation lines in crystals with strong atomic-scale disorder. Mater. Sci. Eng. A. 740:, 285–294 (2019).