Piezoresistive nanocomposites for sensing the effectiveness of composite patch repair
Tài liệu tham khảo
Hollaway, 2010, A review of the present and future utilization of FRP composites in the civil infrastructure with reference to their important in-service properties, Constr. Build. Mater., 24, 2419, 10.1016/j.conbuildmat.2010.04.062
Poudel, 2016, Non-destructive evaluation of composite repairs by using infrared thermography, J. Comp. Mater., 50, 351, 10.1177/0021998315574755
Tombler, 2000, Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation, Nature, 405, 769, 10.1038/35015519
Hu, 2008, Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor, Acta Mater., 56, 2929, 10.1016/j.actamat.2008.02.030
Safdari, 2012, Electrical conductivity of synergistically hybridized nanocomposites based on graphite nanoplatelets and carbon nanotubes, Nanotechnology, 23, 405202, 10.1088/0957-4484/23/40/405202
Fang, 2015, Elucidation of structure-to-property relationships of piezoresistive polymer-carbon nanotube nanocomposites, J. Appl. Phys., 118, 044907, 10.1063/1.4927628
Kang, 2006, A carbon nanotube strain sensor for structural health monitoring, Smart Mater. Struct., 15, 737, 10.1088/0964-1726/15/3/009
Thostenson, 2008, Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks, Nanotechnology, 19, 215713, 10.1088/0957-4484/19/21/215713
Namilae, 2018, Improved piezoresistivity and damage sensing application of hybrid carbon nanotube sheet – graphite platelet nanocomposite, Mech. of Adv. Mater. Struct., 1, 10.1080/15376494.2018.1432812
Gbaguidi, 2018, Monte Carlo model for piezoresistivity of hybrid nanocomposites, ASME. J. Eng. Mater. Technol., 140, 011007, 10.1115/1.4037024