Sự phát sinh siêu liên tục trong sợi tinh thể pho-ton cỡ lớn cho siêu quang phổ học Raman chống Stokes đồng bộ
Tóm tắt
Chúng tôi thực hiện một cuộc điều tra lý thuyết và thực nghiệm chi tiết về sự phát sinh siêu liên tục trong các sợi tinh thể photon cỡ lớn, được bơm bằng laser Nd:YVO4 picô giây có năng lượng cao và tần suất lặp lại cao, với mục tiêu sử dụng nó làm chùm sáng Stokes trong thiết lập phân tán Raman chống Stokes đồng bộ. Chúng tôi phân tích ảnh hưởng của cấu trúc và chiều dài sợi đến công suất siêu liên tục, hình dạng phổ, và độ phân tán độ trễ nhóm. Chúng tôi xác định điều kiện thí nghiệm để phát sinh siêu liên tục ổn định, với năng lượng xung ở cấp độ microjoule và phổ mở rộng vượt quá 1600 nm, cho phép kích thích tần số Raman lên đến 3000 cm−1 và hơn thế nữa. Chúng tôi chứng minh sự vận hành đáng tin cậy và hiệu quả của một thiết lập siêu quang phổ học Raman chống Stokes đồng bộ sử dụng nguồn siêu liên tục này.
Từ khóa
Tài liệu tham khảo
Knight, J. C. et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19), 1547–1549 (1996).
Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000).
Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416(6877), 233–237 (2002).
Tu, H. & Boppart, S. A. Coherent fiber supercontinuum for biophotonics. Laser Photonics Rev. 7(5), 628–645 (2013).
Tu, H. & Boppart, S. A. Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation. J. Biophotonics 7(1-2), 9–22 (2014).
Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82(20), 4142–4145 (1999).
Pestov, D. et al. Optimizing the laser-pulse configuration for coherent Raman spectroscopy. Science 316(5822), 265–268 (2007).
Camp, C. H. et al. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photonics 8(8), 627–634 (2014).
Cheng, J. X. & Xie, X. S. Coherent Raman scattering microscopy. (CRC, 2012).
Paulsen, H. N., Hilligsøe, K. M., Thøgersen, J., Keiding, S. R. & Larsen, J. J. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source. Opt. Lett. 28(13), 1123–1125 (2003).
Konorov, S. O. et al. Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers. Phys. Rev. E 70(5), 057601 (2004).
Kee, T. W. & Cicerone, M. T. Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 29(23), 2701–2703 (2004).
Okuno, M., Kano, H., Leproux, P., Couderc, V. & Hamaguchi, H. Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared. Opt. Lett. 33(9), 923–925 (2008).
von Vacano, B. & Motzkus, M. Time-resolved two color single-beam CARS employing supercontinuum and femtosecond pulse shaping. Opt. Commun. 264(2), 488–493 (2006).
Pegoraro, A. F. et al. Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator. Opt. Express 17(4), 2984–2996 (2009).
Pegoraro, A. F. et al. All-fiber CARS microscopy of live cells. Opt. Express 17(23), 20700–20706 (2009).
Baumgartl, M. et al. All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion. Opt. Express 20(4), 4484–4493 (2012).
Freudiger, C. W. et al. Stimulated Raman scattering microscopy with a robust fiber laser source. Nat. Photonics 8(2), 153–159 (2014).
Selm, R. et al. Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system. Opt. Lett. 35(19), 3282–3284 (2010).
Wang, H., Huff, T. B. & Cheng, J. X. Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber. Opt. Lett. 31(10), 1417–1419 (2006).
Balu, M., Liu, G., Chen, Z., Tromberg, B. J. & Potma, E. O. Fiber delivered probe for efficient CARS imaging of tissues. Opt. Express 18(3), 2380–2388 (2010).
Genty, G., Ritari, T. & Ludvigsen, H. Supercontinuum generation in large mode-area microstructured fibers. Opt. Express 13(21), 8625–8633 (2005).
Mitrofanov, A. V., Ivanov, A. A., Alfimov, M. V., Podshivalov, A. A. & Zheltikov, A. M. Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber. Opt. Commun. 280(2), 453–456 (2007).
Cherif, R., Zghal, M., Nikolov, I. & Danailov, M. High energy femtosecond supercontinuum light generation in large mode area photonic crystal fiber. Opt. Commun. 283(21), 4378–4382 (2010).
Savitski, V. G., Yumashev, K. V., Kalashnikov, V. L., Shevandin, V. S. & Dukel’skii, K. V. Infrared supercontinuum from a large mode area PCF under extreme picosecond excitation. Opt. Quant. Electron. 39(15), 1297–1309 (2007).
Arora, R., Petrov, G. I., Liu, J. & Yakovlev, V. V. Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing. J. Biomed. Opt. 16(2), 021114 (2011).
Mitrokhin, V. P., Fedotov, A. B., Ivanov, A. A., Alfimov, M. V. & Zheltikov, A. M. Coherent anti-Stokes Raman scattering microspectroscopy of silicon components with a photonic-crystal fiber frequency shifter. Opt. Lett. 32(23), 3471–3473 (2007).
Gottschall, T. et al. Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy. Laser Photonics Rev. 9(5), 435–451 (2015).
Yakovlev, V. V. Advanced instrumentation for nonlinear Raman microscopy. J. Raman Spectrosc. 34(12), 957–964 (2003).
Petrov, G. I. & Yakovlev, V. V. Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy. Opt. Express 13(4), 1299–1306 (2005).
Heinrich, C., Bernet, S. & Ritsch-Marte, M. Wide-field coherent anti-Stokes Raman microscopy. Appl. Phys. Lett. 84(5), 816–818 (2004).
Roy, S., Gord, J. R. & Patnaik, A. K. Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows. Prog. Energy Combust. 36(2), 280–306 (2010).
Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006).
Zheltikov, A. M. Let there be white light: supercontinuum generation by ultrashort laser pulses. Phys. Uspekhi 49(6), 605–628 (2006).
Voronin, A. A. & Zheltikov, A. M. Nonlinear dynamics of high-power ultrashort laser pulses: exaflop computations on a laboratory computer station and subcycle light bullets. Phys. Uspekhi 59(9), 869–877 (2016).
Petrov, G. I., Yakovlev, V. V. & Minkovski, N. I. Broadband continuum-generation of the output of high-energy diode-pumped picosecond laser. Opt. Commun. 229(1–6), 441–445 (2004).
Ishii, N. et al. Widely tunable soliton frequency shifting of few-cycle laser pulses. Phys. Rev. E 74(3), 036617 (2006).
Wetzel, B. et al. Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Sci. Rep. 2, 882 (2012).
Lucht, R. P. Three-laser coherent anti-Stokes Raman scattering measurements of two species. Opt. Lett. 12(2), 78–80 (1987).
Orwa, J. O. et al. Nickel related optical centres in diamond created by ion implantation. J. Appl. Phys. 107(9), 093512 (2010).
Large Mode Area Photonic Crystal Fibers. http://www.nktphotonics.com/lasers-fibers/en/product/large-mode-area-photonic-crystal-fibers/ (Date of access: 9/20/2017) (2014).