Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives

Journal of Zhejiang University-SCIENCE B - Tập 9 - Trang 210-220 - 2008
Mohammad Iqbal Lone1,2, Zhen-li He1,3, Peter J. Stoffella1, Xiao-e Yang3
1Indian River Research and Education Center, University of Florida Institute of Food and Agricultural Sciences, Fort Pierce, USA
2University of Arid Agriculture, Rawalpindi, Pakistan
3MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Natural Resources and Environmental Sciences, Zhejiang University, Hangzhou, China

Tóm tắt

Environmental pollution affects the quality of pedosphere, hydrosphere, atmosphere, lithosphere and biosphere. Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources. Phytoremediation, being more cost-effective and fewer side effects than physical and chemical approaches, has gained increasing popularity in both academic and practical circles. More than 400 plant species have been identified to have potential for soil and water remediation. Among them, Thlaspi, Brassica, Sedum alfredii H., and Arabidopsis species have been mostly studied. It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come. This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.

Tài liệu tham khảo

Chaney, R.L., Malik, M., Li, Y.M., Brown, S.L., Brewer, E.P., Scott Angle, J., Baker, A.J.M., 1997. Phytoremediation of soil metals. Curr. Opin. Biotechnol., 8(3):279–284. [doi:10.1016/S0958-1669(97)80004-3]

Cosio, C., Martinoia, E., Keller, C., 2004. Hyperaccumulaton of cadium and zinc in Thlaspi caerulescens and Arabidopsis hallri at leaf cellular level. Plant Physiol, 134(2): 716–725. [doi:10.1104/pp.103.031948]

Escarre, J., Lefebvre, C., Gruber, W., 2000. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: Implications for phytoremediation. New Phytologist, 145(3):429–437. [doi:10.1046/j.1469-8137.2000.00599.x]

Frey, B., Keller, C., Zierold, K., 2000. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ., 23(7):675–687. [doi:10.1046/j.1365-3040.2000.00590.x]

Gade, L.H., 2000. Highly polar metal—Metal bonds in “early-late” heterodimetallic complexes. Angewandte Chemie-International Edition, 39(15):2658–2678. [doi:10.1002/1521-3773(20000804)39:15〈2658::AID-ANIE2658〉3.0.CO;2-C]

Garbisu, C., Alkorta, I., 2001. Phytoextraction: A cost effective plant-based technology for the removal of metals from the environment. Biores. Technol., 77(3):229–236. [doi:10.1016/S0960-8524(00)00108-5]

Giller, K.E., Witter, E., McGrath, S.P., 1998. Toxicity of heavy metals to microorganism and microbial processes in agricultural soils: A review. Soil Biol. Bichem., 30(10–11):1389–1414. [doi:10.1016/S0038-0717(97)00270-8]

Gisbert, C., Ros, R., de Haro, A., Walker, D.J., Pilar Bernal, M., Serrano, R., Avino, J.N., 2003. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun., 303(2):440–445. [doi:10.1016/S0006-291X(03)00349-8]

Gove, B., Hutchison, J.J., Young, S.D., Craigen, J., McGrath, S.P., 2002. Uptake of metals by plants sharing a rhizosphere with the hyperaccumulation Thlaspi caerulescences. Int. J. Phytoremediation, 4(4):267–281. [doi:10.1080/15226510208500087]

Kabata-Pendias, A., 2001. Trace Elements in Soils and Plants, 3rd Ed. CRC Press, Boca Raton, Florida.

Kozdrój, J., van Elsas, J.D., 2001. Structural diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE finger printing and FAME profiling. Appl. Soil Ecol., 17(1):31–42. [doi:10.1016/S0929-1393(00)00130-X]

Kupper, H., Lombi, E., Zhao, F.J., Wieshammer, G., McGrath, S.P., 2001. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Tulips goesingense. J. Exp. Bot., 52(365): 2291–2300. [doi:10.1093/jexbot/52.365.2291]

Landberg, T., Greger, M., 1996. Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Applied Geochem., 11(1–2):175–180. [doi:10.1016/0883-2927(95)00082-8]

Li, H., Cheng, F., Wang, A., Wu, T., 2005. Cadmium Removal from Water by Hydrophytes and Its Toxic Effects. Proc. of the International Symposium of Phytoremediation and Ecosystem Health. Sept. 10–13, 2005, Hangzhou, China.

Li, T.Q., Yang, X.E., He, Z.L., Yang, J.Y., 2005a. Root morphology and Zn2+ uptake kinetics of the Zn hyperaccumulator of Sedum alfredii Hance. J. Integr. Plant Biol., 47(8):927–934. [doi:10.1111/j.1744-7909.2005.00117.x]

Li, T.Q., Yang, X.E., Jin, X.F., He, Z.L., Stoffella, P.J., Hu, Q.H., 2005b. Root response and metal accumulation in two contrasting ecotypes of Sedium alfredii Hance under lead and zinc stress. J. Environ. Sci. Health, 40(5): 1081–1096. [doi:10.1081/ESE-200056163]

Lindqvist, O., 1991. Mercury in the Swedish environment. Water Air Soil Bull., 55(1):23–32.

Liu, Y., 2006. Shrinking Arable Lands Jeopardizing China’s Food Security. http://www.worldwatch.org/node/3912

Liu, X.M., Wu, Q.T., Banks, M.K., 2005. Effect of simultaneous establishment of Sedum alfridii and Zea mays on heavy metal accumulation in plants. Int. J. Phytoremediation, 7(1):43–53. [doi:10.1080/16226510590915800]

Lombi, E., Zhao, F.J., Dunham, S.J., 2000. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist, 145(1):11–20. [doi:10.1046/j.1469-8137.2000.00560.x]

Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., Kennely, E.D., 2001. A fern that hyperaccumulates arsenic. Nature, 409(6820):579. [doi:10.1038/35054664]

McGrath, S.P., Zhao, F.J., Lombi, E., 2001. Plant and rhizosphere process involved in phytoremediation of metal-contaminated soils. Plant Soil, 232(1/2):207–214. [doi:10.1023/A:1010358708525]

McKeehan, P., 2000. Brownfields: The Financial, Legislative and Social Aspects of the Redevelopment of Contaminated Commercial and Industrial Properties. http://md3.csa.com/discoveryguide/brown/overview.php?SID=05c43ivvp4r0detrha3d9r5g

Nriagu, J.O., Pacyna, J.M., 1988. Quantitative assessment of worldwide contamination of air water and soils by trace metals. Nature, 333(6169):134–139. [doi:10.1038/333134a0]

Pollard, A.J., Powell, K.D., Harper, F.A., Smith, J.A.C., 2002. The genetic basis of metal hyperaccumulation in plants. Crit. Rev. Plant Sci., 21(6):539–566. [doi:10.1080/0735-260291044359]

Puschenreiter, M., Wieczorek, S., Horak, O., Wenzel, W.W., 2003. Chemical Changes in the rhizospher of metal hyperaccumulator and excluder Thlaspi species. J. Plant Nutri Soil Sci., 166(5):579–584. [doi:10.1002/jpln.200321155]

Ragnarsdottir, K.V., Hawkins, D., 2005. Trace metals in soils and their relationship with scrapie occurrence. Geochimica et Cosmochimica Acta, 69(10):A196–A196.

Raskin, I., Gleba, D., Smith, R., 1996. Using plant seedlings to remove heavy metals from water. Plant Physiol., 111(2): 552–552.

Salido, A.L., Hastly, K.L., Lim, J.M., Butcher, D.J., 2003. Phytoremediation of arsenic and lead in contaminated soils using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int. J. Phytoremediation, 5(2):89–103. [doi:10.1080/713610173]

Salt, D.E., Smith, R.D., Raskin, L., 1998. Phytoremediation. Ann. Rev. Plant Phys. Plant Mol. Biol., 49(1):643–668. [doi:10.1146/annurev.arplant.49.1.643]

Sarret, G., Saumitou-Laprade, P., Bert, V., 2002. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol., 130(4):1815–1826. [doi:10.1104/pp.007799]

Schmidt, U., 2003. Enhancing phytoremediation: The effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J. Environ. Qual., 32: 1939–1954.

Schwartz, C., Echevarria, G., Morel, J.L., 2003. Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil, 249(1):27–35. [doi:10.1023/A:1022584220411]

Sneller, F.E.C., van Heerwaarden, L.M., Schat, H., 2000. Toxicity, metal uptake, and accumulation of phytochelatins in silene vulgaris exposed to mixtures of cadmium and arsenate. Environ. Toxicol. Chem., 19(12):2982–2986. [doi:10.1897/1551-5028(2000)019〈2982:TMUAAO〉2.0.CO;2]

Wang, Q., Cui, Y., Dong, Y., 2002. Phytoremediation of polluted waters potential and prospects of wetland plants. Acta Biotechnol., 22(1–2):199–208. [doi:10.1002/1521-3846(200205)22:1/2〈199::AID-ABIO199〉3.0.CO;2-T]

Whiting, N.S., Leake, R.J., McGrath, P.S., baker, M.J.A., 2000. Positive response to Zn and CD by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol., 145(2):199–210. [doi:10.1046/j.1469-8137.2000.00570.x]

Yang, X.E., Ye, H.B., Long, X.X., He, B., He, Z.L., Stoffella, P.J., Calvert, D.V., 2004. Uptake and accumulation of cadmium and Zinc by Sedum alfredii Hance at different Cd/Zn supply levels. J. Plant Nutr., 27(11):1963–1977. [doi:10.1081/PLN-200030082]

Yang, X.E., Li, T.Q., Yang, J.C., He, Z.L., Lu, L.L., Meng, F.H., 2006. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta, 224(1): 185–195. [doi:10.1007/s00425-005-0194-8]

Zaranyika, M.F., Ndapwadza, T., 1995. Uptake of Ni, Zn, Fe, Co, Cr, Pb, Cu and Cd by water hyacinth (Eichhornia crassipes) in Mukuvisi and Manyame Rivers, Zimbabwe. J. Environ. Sci. Health Part A, 30(1):157–169.

Zhang, W.H., Cai, Y., Tu, C., Ma, L.Q., 2002. Arsenic speciation and distribution in an arsenic hyper accumulating plant. Sci. Total Environ., 300(1–3):167–177. [doi:10.1016/S0048-9697(02)00165-1]

Zhang, L., Tian, S., Ye, Z., Yang, X., Peng, H., 2005. The Efficiency of Heavy Metal Removal from Contaminated Water by Elsholtzia argi and Elsholtzia splendens. Proc. of the International Symposium of Phytoremediation and Ecosystem Health. Sept. 10–13, 2005, Hangzhou, China.

Zhao, F.J., Lombi, E., Breedon, T., 2000. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ., 23(5):507–514. [doi:10.1046/j.1365-3040.2000.00569.x]

Zhao, F.J., Dunham, S.J., McGrath, S.P., 2002. Arsenic hyper accumulation by different fern species. New Phytologist, 156(1):27–31. [doi:10.1046/j.1469-8137.2002.00493.x]