Phytochelatins: Peptides Involved in Heavy Metal Detoxification

Applied Biochemistry and Biotechnology - Tập 160 Số 3 - Trang 945-963 - 2010
Raj Pal1, J. P. N.1
1Ecotechnology Laboratory, Department of Environmental Science, G. B. Pant University of Agriculture and Technology, Pantnagar, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Garbisu, C., & Alkorta, I. (2003). European Journal of Mineral Processing & Environmental Protection, 3, 58–66.

Halim, M., Conte, P., & Piccolo, A. (2003). Chemosphere, 52, 265–275. doi: 10.1016/S0045-6535(03)00185-1 .

Long, X. X., Yang, X. E., & Ni, W. Z. (2002). Chinese Journal of Applied Ecology, 13, 757–762.

Blaylock, M. J., & Huang, J. W. (2000). In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment, phytoextraction of metals pp. 53–70. New York: Wiley.

Salt, D. E., Blaylock, M., Kumar Nanda, P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995a). Bio/Technology, 13, 468–474. doi: 10.1038/nbt0595-468 .

Glass, D. J. (2000). In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment, economic potential of phytoremediation pp. 15–31. New York: Wiley.

Reeves, R. D., & Baker, A. J. M. (2000). In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment, metal-accumulating plants pp. 193–229. New York: Wiley.

Guerinot, M. L., & Salt, D. E. (2001). Plant Physiology, 125, 164–167. doi: 10.1104/pp.125.1.164 .

Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Environmental Science & Technology, 29, 1232–1238. doi: 10.1021/es00005a014 .

Navaza, A. P., Montes-Bayon, M., LeDuc, D. L., Terry, N., & Sanz-Mendel, A. (2006). Journal of Mass Spectrometry, 41, 323–331. doi: 10.1002/jms.992 .

Chen, L., Guo, Y., Yang, L., & Wang, Q. (2008). Chinese Science Bulletin, 53, 1503–1511. doi: 10.1007/s11434-008-0062-6 .

Salt, D. E., Prince, R. C., Pickering, I. J., & Raskin, I. (1995b). Plant Physiology, 109, 1427–1433.

Salt, D. E., & Persans, M. W. (2000). Biotechnology & Genetic Engineering Reviews, 17, 389–413.

Wang, J., Zhao, F., Meharg, A. A., Raab, A., Feldmann, J., & McGrath, S. P. (2002). Plant Physiology, 130, 1552–1561. doi: 10.1104/pp.008185 .

Woodard, T. L., Thomas, R. J., & Baoshan, X. (2003). Communications in Soil Science and Plant Analysis, 34, 645–654. doi: 10.1081/CSS-120018965 .

Brooks, R. R. (1983). Biological methods of prospecting for minerals, volume 59 pp. 376–377. New York: Wiley.

January, M. C., Teresa, J. C., Keulen, H. V., & Wei, R. (2008). Chemosphere, 70, 531–537. doi: 10.1016/j.chemosphere.2007.06.066 .

Sousa, A. I., Cacador, I., Lillebo, A. I., & Pardal, M. A. (2008). Chemosphere, 70, 850–857. doi: 10.1016/j.chemosphere.2007.07.012 .

Li, Z. S., Lu, Y. P., Zhen, R. G., Szczypka, M., Thiele, D. J., & Rea, P. A. (1997). Proceedings of the National Academy of Sciences of the United States of America, 94, 42–47. doi: 10.1073/pnas.94.1.42 .

Kawashima, I., Kennedy, T. D., Chino, M., & Lane, B. G. (1992). European Journal of Biochemistry, 209, 971–976. doi: 10.1111/j.1432-1033.1992.tb17370.x .

Cobbett, C. S. (2000). Plant Physiology, 123, 825–832. doi: 10.1104/pp.123.3.825 .

Kondo, N., Imai, K., Isobe, M., Goto, T., Murasugi, A., Wada-Nakagawa, C., & Hayashi, Y. (1984). Tetrahedron Letters, 25, 3869–3872. doi: 10.1016/S0040-4039(01)91190-6 .

Gekeler, W., Grill, E., Winnacker, E. L., & Zenk, M. H. (1989). J Naturforsch Teil C, 44, 361–369.

Grill, E., Loffler, S., Winnacker, E. L., & Zenk, M. H. (1989). Proceedings of the National Academy of Sciences of the United States of America, 86, 6838–6842. doi: 10.1073/pnas.86.18.6838 .

Ha, S. B., Smith, A. P., Howden, R., Dietrich, W. M., Bugg, S., O’Connell, M. J., Goldsbrough, P. B., & Cobbett, C. S. (1999). The Plant Cell, 11, 1153–1164.

Clemens, S., Kim, E. J., Neumann, D., & Schroeder, J. I. (1999). The EMBO Journal, 18, 3325–3333. doi: 10.1093/emboj/18.12.3325 .

Vatamaniuk, O. K., Mari, S., Lu, Y. P., & Rea, P. A. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 7110–7115. doi: 10.1073/pnas.96.12.7110 .

Grill, E., Winnacker, E. L., & Zenk, M. H. (1985). Science, 230, 674–676. doi: 10.1126/science.230.4726.674 .

Rauser, W. E. (1995). Plant Physiology, 109, 1141–1149. doi: 10.1104/pp.109.4.1141 .

Mishra, S., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., & Gupta, D. K. (2006a). Chemosphere, 65, 1027–1039. doi: 10.1016/j.chemosphere.2006.03.033 .

Figueroa, J. A. L., Afton, S., Wrobel, K., Wrobel, K., & Caruso, J. A. (2007). Journal of Analytical Atomic Spectrometry, 22, 897–904. doi: 10.1039/b703912c .

Mendoza-Cozatl, D. G., Butko, E., Springer, F., Torpey, J. W., Komives, E. A., Kehr, J., & Schroeder, J. I. (2008). The Plant Journal, 54, 249–259. doi: 10.1111/j.1365-313X.2008.03410.x .

Zhang, Z., Gao, X., & Qiu, B. (2008). Phytochemistry, 69, 911–9118. doi: 10.1016/j.phytochem.2007.10.012 .

Hanikenne, M. (2003). The New Phytologist, 159, 331–340. doi: 10.1046/j.1469-8137.2003.00788.x .

Chaurasia, N., Mishra, Y., & Rai, L. C. (2008). Biochemical and Biophysical Research Communications, 376, 225–230. doi: 10.1016/j.bbrc.2008.08.129 .

Rauser, W. E. (1999). Cell Biochemistry and Biophysics, 31, 19–48. doi: 10.1007/BF02738153 .

Yang, X. E., & Yang, M. J. (2001). In W. J. Horst, et al. (Ed.), Plant nutrition-food security and sustainability of agro-ecosystems, some mechanisms of zinc and cadmium detoxification in a zinc and cadmium hyperaccumulating plant species (Thlaspi) pp. 444–445. Dordrecht: Kluwer.

Gzy, J., & Gwozdz, E. A. (2005). Plant Cell, Tissue and Organ Culture, 80, 59–67. doi: 10.1007/s11240-004-8808-6 .

Ramos, J., Clemente, M. R., Naya, L., Loscos, J., Perez-Rontome, C., Sato, S., Tabata, S., & Becana, M. (2007). Plant Physiology, 143, 1110–1118. doi: 10.1104/pp.106.090894 .

Maitani, T., Kubota, H., Sato, K., & Yamada, T. (1996). Plant Physiology, 110, 1145–1150.

Morelli, E., & Scarano, G. (2001). Marine Environmental Research, 52, 383–395. doi: 10.1016/S0141-1136(01)00093-9 .

Iglesia-Turino, S., Febrero, A., Jauregui, O., Caldelas, C., Araus, J. L., & Bort, J. (2006). Plant Physiology, 142, 742–749. doi: 10.1104/pp.106.085068 .

Nishikawa, K., Onodera, A., & Tominaga, N. (2006). Chemosphere, 63, 1553–1559. doi: 10.1016/j.chemosphere.2005.09.056 .

Figueroa, J. A. L., Wrobel, K., Afton, S., Caruso, J. A., Corona, J. F. G., & Wrobel, K. (2008). Chemosphere, 70, 2084–2091. doi: 10.1016/j.chemosphere.2007.08.066 .

Vestergaard, M., Matsumoto, S., Nishikori, S., Shiraki, K., Hirata, K., and Takagi, M. (2008). Analytical Sciences, 24, 277–281.

Glaeser, H., Coblenz, A., Kruczek, R., Ruttke, I., Ebert-Jung, A., & Wolf, K. (1991). Current Genetics, 19, 207–213. doi: 10.1007/BF00336488 .

Coblenz, A., & Wolf, K. (2006). FEMS Microbiology Reviews, 14, 303–308. doi: 10.1111/j.1574-6976.1994.tb00103.x .

Howden, R., Goldsbrough, P. B., Andersen, C. R., & Cobbett, C. S. (1995). Plant Physiology, 107, 1059–1066. doi: 10.1104/pp.107.4.1059 .

Klapheck, S., Schlunz, S., & Bergmann, L. (1995). Plant Physiology, 107, 515–521.

Chen, J., Zhou, J., & Goldsbrough, P. B. (1997). Plant Physiology, 101, 165–172.

Inouhe, M., Ito, R., Ito, S., Sasada, N., Tohoyama, H., & Joho, M. (2000). Plant Physiology, 123, 1029–1036. doi: 10.1104/pp.123.3.1029 .

Li, J., Guo, J., Xu, W., & Ma, M. (2006a). Journal of Integrative Plant Biology, 48, 928–937. doi: 10.1002/9780470988718 .

Gasic, K., & Korban, S. S. (2007). Journal of Plant Molecular Biology, 64, 361–369. doi: 10.1007/s11103-007-9158-7 .

Lee, S., Petros, D., Moon, J. S., Ko, T. -S., Goldsbrough, P. B., & Korban, S. S. (2003a). Plant Physiology and Biochemistry, 41, 903–910. doi: 10.1016/S0981-9428(03)00140-2 .

Lee, S., Moon, J. S., Ko, T., Petros, D., Goldsbrough, P. B., & Korban, S. S. (2003b). Plant Physiology, 131, 656–663. doi: 10.1104/pp.014118 .

Wojas, S., Clemens, S., Hennig, J., Sklodowska, A., Kopera, E., Schat, H., Bal, W., & Antosiewicz, D. M. (2008). Journal of Experimental Botany, 59, 2205–2219. doi: 10.1093/jxb/ern092 .

Ranieri, A., Castagna, A., Scebba, F., Careri, M., Zagnoni, I., Predieri, G., Pagliari, M., & Toppi, L. S.di. (2005). Plant Physiology & Biochemistry, 43, 45–54. doi: 10.1016/j.plaphy.2004.12.004 .

Mishra, S., Srivastava, S., Tripathi, R. D., Govindarajan, R., Kuriakose, S. V., & Prasad, M. V. (2006b). Plant Physiology and Biochemistry, 44, 25–37. doi: 10.1016/j.plaphy.2006.01.007 .

De Vos, C. H. R., Vonk, M. J., Vooijs, R., & Schat, H. (1992). Plant Physiology, 98, 853–858. doi: 10.1104/pp.98.3.853 .

Schat, H., & Kalff, M. M. A. (1992). Plant Physiology, 99, 1475–1480. doi: 10.1104/pp.99.4.1475 .

De Knecht, J. A., van Dillen, M., Koevoets, P. L. M., Schat, H., Verkleij, J. A. C., & Ernst, W. H. O. (1994). Plant Physiology, 104, 255–261.

Sun, Q., Ye, Z. H., Wang, X. R., & Wong, M. H. (2007). Journal of Plant Physiology, 164, 1489–1498. doi: 10.1016/j.jplph.2006.10.001 .

Yates III, J. R., McCormack, A. L., Link, A. J., Schieltz, D., Eng, J., & Hays, L. (1996). Analyst (London), 121, 65–76. doi: 10.1039/an996210065r .

Vacchina, V., Chassaigne, H., Lobinsk, R., Oven, M., & Zenk, M. H. (1999). Analyst (London), 124, 1425–1430. doi: 10.1039/a905163e .

Vacchina, V., Lobinsk, R., Oven, M., & Zenk, M. H. (2000). Journal of Analytical Atomic Spectrometry, 15, 529–534. doi: 10.1039/b000217h .

Fan, T. W., Lane, A. N., & Higashi, R. M. (2004). Phytochemical Analysis, 15, 175–183. doi: 10.1002/pca.765 .

Chen, L., Guo, Y., Yang, L., & Wang, Q. (2007). Journal of Analytical Atomic Spectrometry, 22, 1403–1408. doi: 10.1039/b707830g .

Faucheur, S. L., Behra, R., & Sigg, L. (2005). Environmental Toxicology and Chemistry, 24, 1731–1737. doi: 10.1897/04-394R.1 .

Cruz, B. H., Diaz-Cruz, J. M., Sestakova, I., Velek, J., Arino, C., & Esteban, M. (2002). Journal of Electroanalytical Chemistry, 520, 111–118. doi: 10.1016/S0022-0728(02)00640-X .

Kobayashi, R., & Yoshimura, E. (2006). Biological Trace Element Research, 114, 313–318. doi: 10.1385/BTER:114:1:313 .

SchmÖger, M. E. V., Oven, M., & Grill, E. (2000). Plant Physiology, 122, 793–801. doi: 10.1104/pp.122.3.793 .

Raab, A., Feldmann, J., & Meharg, A. A. (2004). Plant Physiology, 134, 1113–1122. doi: 10.1104/pp.103.033506 .

Hirata, K., Tsuji, N., & Miyamoto, K. (2005). Journal of Bioscience and Bioengineering, 100, 593–599. doi: 10.1263/jbb.100.593 .

Ruibin, D., Formentin, E., Losseso, C., Carimi, F., Benedetti, P., Terzi, M., & Lo, S. F. (2005). Journal of Industrial Microbiology & Biotechnology, 32, 527–533. doi: 10.1007/s10295-005-0234-1 .

Clemens, S., Schroeder, J. I., & Degenkolb, T. (2001). European Journal of Biochemistry, 268, 3640–3643. doi: 10.1046/j.1432-1327.2001.02293.x .

Vatamaniuk, O. K., Bucher, E. A., Ward, J. T., & Rea, P. (2001). The Journal of Biological Chemistry, 276, 20817–20820. doi: 10.1074/jbc.C100152200 .

Brulle, F., Cocquerelle, C., Wamalah, A. N., Morgan, A. J., Kille, P., Lepretre, A., & Vandenbulcke, F. (2008). Ecotoxicology and Environmental Safety, 71, 47–55. doi: 10.1016/j.ecoenv.2007.10.032 .

Tsuji, N., Nishikori, S., Iwabe, O., Shiraki, K., Mivasaka, H., Takagi, M., Hirata, K., & Miyamto, K. (2004). Biochemical and Biophysical Research Communications, 315, 751–755. doi: 10.1016/j.bbrc.2004.01.122 .

Rea, P. A., Vatamaniuk, O. K., & Rigden, D. J. (2004). Plant Physiology, 136, 2463–2474. doi: 10.1104/pp.104.048579 .

Wunschmann, J., Beck, A., Meyer, L., Letzel, T., Grill, E., & Lendzian, K. J. (2007). FEBS Letters, 581, 1681–1687. doi: 10.1016/j.febslet.2007.03.039 .

Vatamaniuk, O. K., Mari, S., Lu, Y. P., & Rea, P. A. (2000). The Journal of Biological Chemistry, 275, 31451–31459. doi: 10.1074/jbc.M002997200 .

Vatamaniuk, O. K., Maris, S., Lang, A., Chalasani, S., Demkiv, L. O., & Rea, P. A. (2004). The Journal of Biological Chemistry, 279, 22449–22460. doi: 10.1074/jbc.M313142200 .

Tsuji, N., Nishikori, S., Iwabe, O., Matsumoto, S., Shiraki, K., Miyasaka, H., Takagi, M., Miyamto, K., & Hirata, K. (2005). Planta, 222, 181–191. doi: 10.1007/s00425-005-1513-9 .

Romanyuk, N. D., Rigden, D. J., Vatamaniuk, O. K., Lang, A., Cahoon, R. E., Jez, J. M., & Rea, P. A. (2006). Plant Physiology, 141, 858–869. doi: 10.1104/pp.106.082131 .

Ruotolo, R., Peracchi, A., Bolchi, A., Infusini, G., Amoresano, A., & Ottonello, S. (2004). The Journal of Biological Chemistry, 279, 14686–14693. doi: 10.1074/jbc.M314325200 .

Collin-Hansen, C., Pedersen, S. A., & Andersan, R. A. (2007). Mycologia, 99, 161–174. doi: 10.3852/mycologia.99.2.161 .

Xianyan, L., Wenyan, Z., Zhi, Z., Jian, C., & Du, G. (2008). Chinese Journal of Biotechnology, 24, 1046–1050. doi: 10.1007/978-0-387-71139-3 .

Liang, G., Lia, X., Du, G., & Chen, J. (2009). Bioresource Technology, 100, 350–355. doi: 10.1016/j.biortech.2008.06.012 .

Xiang, C., & Oliver, D. J. (1998). The Plant Cell, 10, 1539–1550.

Kang, S. H., Sing, S., Kim, J. Y., Lee, W., Mulchandani, A., & Chen, N. (2007). Applied and Environmental Microbiology, 73, 6317–6320. doi: 10.1128/AEM.01237-07 .

Guo, J., Dai, X., Xu, W., & Ma, M. (2008). Chemosphere, 72, 1020–1026. doi: 10.1016/j.chemosphere.2008.04.018 .

Grill, E., Winnacker, E. L., & Zenk, M. H. (1986). FEBS Letters, 197, 115–120. doi: 10.1016/0014-5793(86)80309-X .

Cazale, A. C., & Clemens, S. (2001). FEBS Letters, 507, 215–219. doi: 10.1016/S0014-5793(01)02976-3 .

Lee, S., & Korban, S. S. (2002). Planta, 215, 689–693. doi: 10.1007/s00425-002-0793-6 .

Zhang, H., Xu, W., Guo, J., He, Z., & Ma, M. (2005). Plant Science, 169, 1059–1065. doi: 10.1016/j.plantsci.2005.07.010 .

Ducruix, C., Junot, C., Fievet, J. -B., Villiers, F., Ezan, E., & Bourguignon, J. (2006). Biochimie, 88, 1733–1742. doi: 10.1016/j.biochi.2006.08.005 .

Gong, J. -M., Lee, D., Chen, A., & Schroeder, J. I. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 10118–10123. doi: 10.1073/pnas.1734072100 .

Li, Y., Danker, O. P., Carreira, L., Smith, A. P., & Merger, R. B. (2006b). Plant Physiology, 141, 288–298. doi: 10.1104/pp.105.074815 .

Chen, A., Komives, E. A., & Schroeder, J. I. (2006). Plant Physiology, 141, 108–120. doi: 10.1104/pp.105.072637 .

Hirschi, K., Korenkov, V., Wilganowski, N., & GJ, W. (2000). Plant Physiology, 124, 125–133. doi: 10.1104/pp.124.1.125 .

Persans, M. W., Nieman, K., & Salt, D. E. (2001). Proceedings of the National Academy of Sciences of the United States of America, 98, 9995–10000. doi: 10.1073/pnas.171039798 .

Tong, Y. P., Kneer, R., & Zhu, Y. G. (2004). Trends in Plant Science, 9, 7–9. doi: 10.1016/j.tplants.2003.11.009 .

Krämer, U., Pickering, I. J., Prince, R. C., Raskin, I., & Salt, D. E. (2000). Plant Physiology, 122, 1343–1354. doi: 10.1104/pp.122.4.1343 .

Bidwell, S. D., Crawford, S. A., Woodrow, I. E., Sommer-Knudsen, J., & Marshall, A. T. (2004). Plant Cell & Environment, 27, 705–716. doi: 10.1111/j.0016-8025.2003.01170.x .

Lu, Y. P., Li, Z. S., & Rea, P. A. (1997). Proceedings of the National Academy of Sciences of the United States of America, 94, 8243–8248. doi: 10.1073/pnas.94.15.8243 .

Ortiz, D. F., Kreppel, L., Speiser, D. M., Scheel, G., McDonald, G., & Ow, D. W. (1992). The EMBO Journal, 11, 3491–3499.

Ortiz, D. F., Ruscitti, T., McCue, K. F., & Ow, D. W. (1995). The Journal of Biological Chemistry, 270, 4721–4728. doi: 10.1074/jbc.270.9.4721 .

Salt, D. E., & Rauser, W. E. (1995). Plant Physiology, 107, 1293–1301.

Vatamaniuk, O. K., Bucher, E. A., Sundaram, M. V., & Rea, P. A. (2005). The Journal of Biological Chemistry, 280, 23684–23690. doi: 10.1074/jbc.M503362200 .

Rea, P. A., Li, Z. -S., Lu, Y. -P., & Drozdowicz, Y. M. (1998). Annual Review of Plant Physiology and Plant Molecular Biology, 49, 727–760. doi: 10.1146/annurev.arplant.49.1.727 .

Song, W. Y. (2003). Nature Biotechnology, 21, 914–919. doi: 10.1038/nbt850 .

Ghose, M., Shen, J., & Rosen, B. P. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 5001–5006. doi: 10.1073/pnas.96.9.5001 .

Gueldry, O. (2003). European Journal of Biochemistry, 270, 2486–2496. doi: 10.1046/j.1432-1033.2003.03620.x .

Mendoza-Cozatl, D. G., Rodriguez-Zavala, J. S., Rodriguez-Enriquez, S., Mendoza-Hernandez, G., Briones-Gallardo, R., & Moreno-Sanchez, R. (2006). The FEBS Journal, 273, 5703–5713. doi: 10.1111/j.1742-4658.2006.05558.x .

Dameron, C. T., Reese, R. N., Mehra, R. K., & Kortan, A. R. (1989). Nature, 338, 596–597. doi: 10.1038/338596a0 .

Reese, R. N., White, C. A., & Wing, D. R. (1992). Plant Physiology, 98, 225–229. doi: 10.1104/pp.98.1.225 .

Stasdeit, H., Duhme, A. K., Kneer, R., Zenk, M. H., Hermes, C., & Nolting, H. -F. (1991). Journal of the Chemical Society. Chemical Communications, 16, 1129–1130. doi: 10.1039/c39910001129 .

Morelli, E., Cruz, B. H., Somovigo, S., & Scarano, G. (2002). Plant Science, 163, 807–813. doi: 10.1016/S0168-9452(02)00216-9 .

Perego, P., Weghe, J. V., Ow, D. W., & Howell, S. B. (1997). Molecular Pharmacology, 51, 12–18.

Speiser, D. M., Ortiz, D. F., Kreppel, L., & Ow, D. W. (1992). Molecular and Cellular Biology, 12, 5301–5310.

Juang, R. H., MacCue, K. F., & Ow, D. W. (1993). Archives of Biochemistry and Biophysics, 304, 392–401. doi: 10.1006/abbi.1993.1367 .

Harada, E., Yamaguchi, Y., Koizumi, N., & Hiroshi, S. (2002). Journal of Plant Physiology, 159, 445–448. doi: 10.1078/0176-1617-00733 .

Saito, K. (2004). Plant Physiology, 136, 2443–2450. doi: 10.1104/pp.104.046755 .

Sulfate uptake and assimilation. Pathway of sulfate assimilation in bacteria 2008. http://www.hort.purdue.edu/rhodcv/hort640/sulfate/su00003.htm . Accessed January 01, 2009.

Hunter, T. C., & Mehra, R. K. (1998). Journal of Inorganic Biochemistry, 69, 293–303. doi: 10.1016/S0162-0134(98)00005-1 .

Weghe, J. G. V., & Ow, D. W. (2008). Molecular Microbiology, 42, 29–36. doi: 10.1046/j.1365-2958.2001.02624.x .