Physiological basis for high CO<sub>2</sub> tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?
Tóm tắt
Abstract. Future ocean acidification has the potential to adversely affect many marine organisms. A growing body of evidence suggests that many species could suffer from reduced fertilization success, decreases in larval- and adult growth rates, reduced calcification rates, and even mortality when being exposed to near-future levels (year 2100 scenarios) of ocean acidification. Little research focus is currently placed on those organisms/taxa that might be less vulnerable to the anticipated changes in ocean chemistry; this is unfortunate, as the comparison of more vulnerable to more tolerant physiotypes could provide us with those physiological traits that are crucial for ecological success in a future ocean. Here, we attempt to summarize some ontogenetic and lifestyle traits that lead to an increased tolerance towards high environmental pCO2. In general, marine ectothermic metazoans with an extensive extracellular fluid volume may be less vulnerable to future acidification as their cells are already exposed to much higher pCO2 values (0.1 to 0.4 kPa, ca. 1000 to 3900 μatm) than those of unicellular organisms and gametes, for which the ocean (0.04 kPa, ca. 400 μatm) is the extracellular space. A doubling in environmental pCO2 therefore only represents a 10% change in extracellular pCO2 in some marine teleosts. High extracellular pCO2 values are to some degree related to high metabolic rates, as diffusion gradients need to be high in order to excrete an amount of CO2 that is directly proportional to the amount of O2 consumed. In active metazoans, such as teleost fish, cephalopods and many brachyuran crustaceans, exercise induced increases in metabolic rate require an efficient ion-regulatory machinery for CO2 excretion and acid-base regulation, especially when anaerobic metabolism is involved and metabolic protons leak into the extracellular space. These ion-transport systems, which are located in highly developed gill epithelia, form the basis for efficient compensation of pH disturbances during exposure to elevated environmental pCO2. Compensation of extracellular acid-base status in turn may be important in avoiding metabolic depression. So far, maintained "performance" at higher seawater pCO2 (>0.3 to 0.6 kPa) has only been observed in adults/juveniles of active, high metabolic species with a powerful ion regulatory apparatus. However, while some of these taxa are adapted to cope with elevated pCO2 during their regular embryonic development, gametes, zygotes and early embryonic stages, which lack specialized ion-regulatory epithelia, may be the true bottleneck for ecological success – even of the more tolerant taxa. Our current understanding of which marine animal taxa will be affected adversely in their physiological and ecological fitness by projected scenarios of anthropogenic ocean acidification is quite incomplete. While a growing amount of empirical evidence from CO2 perturbation experiments suggests that several taxa might react quite sensitively to ocean acidification, others seem to be surprisingly tolerant. However, there is little mechanistic understanding on what physiological traits are responsible for the observed differential sensitivities (see reviews of Seibel and Walsh, 2003; Pörtner et al., 2004; Fabry et al., 2008; Pörtner, 2008). This leads us to the first very basic question of how to define general CO2 tolerance on the species level.
Từ khóa
Tài liệu tham khảo
Abele, D., Strahl, J., Brey, T., and Philipp, E. E. R.: Imperceptible senescence: Ageing in the ocean quahog Arctica islandica, Free Radical Res., 42, 474–480, 2008.
Baldwin, J. and Lee, A. K.: Contributions of aerobic and anaerobic energy-production during swimming in the bivalve mollusk Limaria-fragilis (Family Limidae), J. Comp. Physiol., 129, 361–364, 1979.
Batterton, C. V. and Cameron, J. N.: Characteristics of resting ventilation and response to hypoxia, hypercapnia, and emersion in blue-crab Callinectes-sapidus (Rathbun), J. Exp. Zool., 203, 403–418, 1978.
Bernier, N. J., Brauner, C. J., Heath, J. W., and Randall, D. J.: Oxygen and carbon dioxide transport during sustained exercise in diploid and triploid chinook salmon (Oncorhynchus tshawytscha), Can. J. Fish. Aquat. Sci., 61, 1797–1805, 2004.
Bertorello, A. M., and Katz, A. I.: Short-term regulation of renal Na+-K+-ATPase activity: physiological relevance and cellular mechanisms, Am. J. Physiol., 265, F743–F755, 1993.
Booth, C. E., McMahon, B. R., and Pinder, A. W.: Oxygen-uptake and the potentiating effects of increased hemolymph lactate on oxygen-transport during exercise in the blue-crab, Callinectes-sapidus, J. Comp. Physiol., 148, 111–121, 1982.
Booth, C. E., McDonald, D. G., and Walsh, P. J.: Acid-base balance in the sea mussel, Mytilus edulis, L, Effects of hypoxia and air exposure on hemolymph acid-base status, Mar. Biol. Lett., 5, 347–358, 1984a.
Booth, C. E., McMahon, B. R., Defur, P. L., and Wilkes, P. R. H.: Acid-base regulation during exercise and recovery in the blue crab, Callinectes sapidus, Resp. Physiol., 58, 359–376, 1984b.
Boutilier, R. G., Heming, T. A., and Iwama, G. K.: Appendix – Physicochemical parameters for use in fish respiratory physiology, Fish Physiol., 10, 403–430, 1984.
Brauner, C. J., Thorarensen, H., Gallaugher, P., Farrell, A. P., and Randall, D. J.: CO2 transport and excretion in rainbow trout (Oncorhynchus mykiss) during graded sustained exercise, Resp. Physiol., 119, 69–82, 2000.
Brix, O., Bardgard, A., Cau, A., Colosimo, A., Condo, S. G., and Giardina, B.: Oxygen-binding properties of cephalopod blood with special reference to environmental temperatures and ecological distribution, J. Exp. Zool., 252, 34–42, 1989.
Brown, A. C. and Terwilliger, N. B.: Developmental changes in oxygen uptake in Cancer magister (Dana) in response to changes in salinity and temperature, J. Exp. Mar. Biol. Ecol., 241, 179–192, 1999.
Budelmann, B. U., Schipp, R., and von Boletzky, S.: Cephalopoda, in: Microscopic Anatomy of Invertebrates, Mollusca II, Wiley-Liss, New York, Volume 6A, 1997.
Burnett, L., Terwilliger, N., Carroll, A., Jorgensen, D., and Scholnick, D.: Respiratory and acid-base physiology of the purple sea urchin, Strongylocentrotus purpuratus, during air exposure: Presence and function of a facultative lung, Biol. Bull., 203, 42–50, 2002.
Caldeira, K. and Wickett, M. E.: Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean, J. Geophys. Res., 110, 110, C09S04, https://doi.org/10.1029/2004JC002671, 2005.
Camacho, A. P., Labarta, U., and Navarro, E.: Energy balance of mussels Mytilus galloprovincialis: the effect of length and age, Mar. Ecol.-Prog. Ser., 199, 149–158, 2000.
Cameron, J. N. and Polhemus, J. A.: Theory of CO2 exchange in trout gills, J. Exp. Biol., 60, 183–194, 1974.
Chatelier, A., McKenzie, D., and Claireaux, G.: Effects of changes in water salinity upon exercise and cardiac performance in the European seabass (Dicentrarchus labrax), Mar. Biol., 147, 855–862, 2005.
Claiborne, J. B., Edwards, S. L., and Morrison-Shetlar, A. I.: Acid-base regulation in fishes: cellular and molecular mechanisms, J. Exp. Zool., 293, 302–319, 2002.
Decleir, W., Lemaire, J., and Richard, A.: The differentiation of blood proteins during ontogeny in Sepia officinalis L., J. Comp. Biochem. Physiol., 40, 923–930, 1971.
Dejours P.: Principles of comparative respiratory physiology: North. Holl. Publ. Comp. Amsterdam, New York, 1975.
Deigweiher, K., Koschnick, N., Portner, H. O., and Lucassen, M.: Acclimation of ion regulatory capacities in gills of marine fish under environmental hypercapnia, Am. J. Physiol.-Reg. I., 295, R1660–R1670, 2008.
Desforges, P. R., Harman, S. S., Gilmour, K. M., and Perry, S. F.: Sensitivity of CO2 excretion to blood flow changes in trout is determined by carbonic anhydrase availability, Am. J. Physiol.-Reg. I., 282, R501–R508, 2002.
Dickson, K. A., Donley, J. M., Sepulveda, C., and Bhoopat, L.: Effects of temperature on sustained swimming performance and swimming kinematics of the chub mackerel Scomber japonicus, J. Exp. Biol., 205, 969-980, 2002.
Diez, J. M. and Davenport, J.: Embryonic respiration in the dogfish (Scyliorhinus canicula L), J. Mar. Biol. Ass. UK, 67, 249–261, 1987.
Dupont, S., Havenhand, J., Thorndyke, W., Peck, L., and Thorndyke, M.: Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis, Mar. Ecol.-Prog. Ser., 373, 285–294, 2008.
Dupont, S. and Thorndyke, M.: Ocean acidification and its impact on the early life-history stages of marine animals, CIESM Monographs, 36, 124 pp., 2009.
Dwyer, J. J. and Burnett, L. E.: Acid-base status of the oyster Crassostrea virginica in response to air exposure and to infections by Perkinsus marinus, Biol. Bull., 190, 139–147, 1996.
Elkin, C. E. and Marshall, D. J.: Desperate larvae: the influence of deferred costs and habitat requirements on habitat selection, Mar. Ecol.-Prog. Ser., 335, 143–153, 2007.
Evans, D. H., Piermarini, P. M., and Choe, K. P.: The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste, Physiol. Rev., 85, 97–177, 2005.
Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C.: Impacts of ocean acidification on marine fauna and ecosystem processes, ICES J. Mar. Sci., 65, 414–432, 2008.
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B.: Evidence for upwelling of corrosive "acidified" water onto the continental shelf, Science, 320, 1490–1492, 2008.
Feraille, E. and Doucet, A.: Na+-K+-ATPase dependent sodium transport in the kidney: hormonal control, Physiol. Rev., 81, 345–418, 2001.
Fernandez, M., Bock, C., and Pörtner, H. O.: The cost of being a caring mother: the ignored factor in the reproduction of marine invertebrates, Ecol. Lett., 3, 487–494, 2000.
Fernandez, M., Pardo, L. M., and Baeza, J. A.: Patterns of oxygen supply in embryo masses of brachyuran crabs throughout development: the effect of oxygen availability and chemical cues in determining female brooding behavior, Mar. Ecol.-Prog. Ser., 245, 181–190, 2002.
Fivelstad, S., Haavik, H., Lovik, G., and Olsen, A. B.: Sublethal effects and safe levels of carbon dioxide in seawater for Atlantic salmon postsmolts (Salmo salar L.): ion regulation and growth, Aquaculture, 160, 305–316, 1998.
Fivelstad, S., Olsen, A. B., Asgard, T., Baeverfjord, G., Rasmussen, T., Vindheim, T., and Stefansson, S.: Long-term sublethal effects of carbon dioxide on Atlantic salmon smolts (Salmo salar L.): ion regulation, haematology, element composition, nephrocalcinosis and growth parameters, Aquaculture, 215, 301–319, 2003.
Foss, A., Rosnes, B. A., and Oiestad, V.: Graded environmental hypercapnia in juvenile spotted wolffish (Anarhichas minor Olafsen): effects on growth, food conversion efficiency and nephrocalcinosis, Aquaculture, 220, 607–617, 2003.
Franke, A.: Effects of elevated seawater pCO2 on embryonic and larval development of Baltic herring, Diploma thesis, Univ. Kiel, 69 pp. 2008.
Frankignoulle, M., Bourge, I., and Wollast, R.: Atmospheric CO2 fluxes in a highly polluted estuary (the Scheldt), Limnol. Oceanogr., 41, 365–369, 1996.
Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Libert, E., and Theate, J.-M.: Carbon dioxide emission from european estuaries, Science, 282, 434–436, 1998.
Fry, F. E. J.: Effects of the environment on animal activity, Univ. Toronto Studies Biology Series, 55, 1–62, 1947.
Gazeau, F., Quiblier, C., Jansen, J. M., Gattuso, J.-P., Middelburg, J. J., and Heip, C. H. R.: Impact of elevated CO2 on shellfish calcification, Geophys. Res. Lett., 34, L07603, https://doi.org/10.1029/2006GL028554, 2007.
Gibbs, A. and Somero, G. N.: Na+-K+-Adenosine triphosphatase activities in gills of marine teleost fishes – changes with depths, size and locomotory acitvitiy level, Mar. Biol., 106, 315–321, 1990.
Gilmour, K. M. and MacNeill, G. K.: Apparent diffusion limitations on branchial CO2 transfer are revealed by severe experimental anaemia in brown bullhead (Ameiurus nebulosus), Comp. Biochem. Physiol., 135, 165–175, 2003.
Guppy, M. and Withers, P.: Metabolic depression in animals: physiological perspectives and biochemical generalizations, Biol. Rev., 74, 1–40, 1990.
Gutowska, M. A., Pörtner, H. O., and Melzner, F.: Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2, Mar. Ecol.-Prog. Ser., 373, 303–309, 2008.
Gutowska, M. A. and Melzner, F.: Abiotic conditions in cephalopod (Sepia officinalis) eggs: embryonic development at low pH and high pCO2, Mar. Biol., 156, 515–519, 2009.
Gutowska, M. A., Melzner, F., Langenbuch, M., Bock, C., Claireaux, G., and Pörtner, H. O.: Acid-base regulatory capacity in the cephalopod Sepia officinalis exposed to environmental hypercapnia, J. Comp. Phys. B, in press, https://doi.org/10.1007/s00360-009-0412-y, 2009.
Gutowska, M. A., Melzner, F., Pörtner, H. O., and Meier, S.: Calcification in the cephalopod Sepia officinalis in response to elevated seawater pCO2, Mar. Biol., accepted, 2009.
Hamdoun, A. and Epel, D.: Embryo stability and vulnerability in an always changing world, P. Natl. Acad. Sci. USA, 104, 1745–1750, 2007.
Hamilton, N. M. and Houlihan, D. F.: Respiratory and circulatory adjustments during aquatic treadmill exercise in the european shore crab Carcinus-maenas, J. Exp. Biol., 162, 37–54, 1992.
Havenhand, J. N., Buttler, F. R., Thorndyke, M. C., and Williamson, J. E.: Near-future levels of ocean acidification reduce fertilization success in a sea urchin, Curr. Biol., 18, R651–R652, 2008.
Heisler, N.: Acid-base regulation in fishes, in: Acid-base regulation in Animals, edited by: Heisler, N., Elsevier Biomedical Press, Amsterdam, 309–356, 1986.
Henry, R. P. and Cameron, J. N.: The role of carbonic-anhydrase in respiration, ion regulation and acid-base-balance in the aquatic crab Callinectes-sapidus and the terrestrial crab Gecarcinus-lateralis, J. Exp. Biol., 103, 205–223, 1983.
Henry, R. P. and Swenson, E. R.: The distribution and physiological significance of carbonic anhydrase in vertebrate gas exchange organs, Resp. Physiol., 121, 1–12, 2000.
Hill, A. D., Taylor, A. C., and Strang, R. H. C.: Physiological and metabolic responses of the shore crab Carcinus-maenas (L) during environmental anoxia and subsequent recovery, J. Exp. Mar. Biol. Ecol., 150, 31–50, 1991.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., et al.: Coral reefs under rapid climate change and ocean acidification, Science, 318, 1737–1742, 2007.
Holeton, G. F., Neumann, P., and Heisler, N.: Branchial ion-exchange and acid-base regulation after strenuous exercise in rainbow-trout (Salmo gairdneri), Resp. Physiol., 51, 303–318, 1983.
Houlihan, D. F., Innes, A. J., Wells, M. J., and Wells, J.: Oxygen-consumption and blood-gases of Octopus-vulgaris in hypoxic conditions, J. Comp. Physiol., 148, 35–40, 1982.
Houlihan, D. F., Duthie, G., Smith, P. J., Wells, M. J., and Wells, J.: Ventilation and circulation during exercise in Octopus-vulgaris, J. Comp. Physiol., 156, 683–689, 1986.
Hughes, G. M. and Iwai, T.: Morphometric study of gills in some pacific deep-sea fishes, J. Zool., 184, 155–170, 1978.
Hunt, J. C. and Seibel, B. A.: Life history of Gonatus onyx (Cephalopoda : Teuthoidea): ontogenetic changes in habitat, behavior and physiology, Mar. Biol., 136, 543–552, 2000.
Ishimatsu, A., Hayashi, M., Lee, K. S., Kikkawa, T., and Kita, J.: Physiological effects on fishes in a high-CO2 world, J. Geophys. Res., 110, C09S09, https://doi.org/10.1029/2004JC002564, 2005.
Ishimatsu, A., Kikkawa, T., Hayashi, M., Lee, K. S., and Kita, J.: Effects of CO2 on marine fish: larvae and adults, J. Oceanogr., 60, 731–741, 2004.
Johansen, K. and Petersen, J. A.: Gas exchange and active ventilation in a starfish, Pteraster tesselatus, Z. vergl. Physiol., 70, 1–19, 1971.
Johansen, K., Brix, O., and Lykkeboe, G.: Blood gas transport in the cephalopod Sepia officinalis, J. Exp. Biol., 99, 331–338, 1982.
Kiceniuk, J. W. and Jones, D. R.: Oxygen-transport system in trout (Salmo gairdneri) during sustained exercise, J. Exp. Biol., 69, 247–260, 1977.
Kikkawa, T., Ishimatsu, A., and Kita, J.: Acute CO2 tolerance during the early developmental stages of four marine teleosts, Environ. Toxicol., 18, 375–382, 2003.
Knoll, A. H., Barnbach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W.: Paleophysiology and end-Permian mass extinction, Earth Planet. Sci. Lett., 256, 295–313, 2007.
Korsmeyer, K. E., Lai, N. C., Shadwick, R. E., and Graham, J. B.: Oxygen transport and cardiovascular responses to exercise in the yellowfin tuna Thunnus albacares, J. Exp. Biol., 200, 1987–1997, 1997.
Kraffe, E., Tremblay, R., Belvin, S., LeCoz, J. R., Marty, Y., and Guderley, H.: Effect of reproduction on escape responses, metabolic rates and muscle mitochondrial properties in the scallop Placopecten magellanicus, Mar. Biol., 156, 25–38, 2008.
Kurihara, H. and Shirayama, Y.: Effects of increased atmos extracellular pHric CO2 on sea urchin early development, Mar. Ecol.-Prog. Ser., 274, 161–169, 2004.
Kurihara, H. and Ishimatsu, A.: Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations, Mar. Pollut. Bull., 56, 1086–1090, 2008.
Kurihara, H., Matsui, M., Furukawa, H., Hayashi, M., and Ishimatsu, A.: Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus, J. Exp. Mar. Biol. Ecol., 367, 41–46, 2008.
Kurihara, H.: Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates, Mar. Ecol-Prog. Ser., 373, 275–284, 2008.
Langdon, C., Takahashi, T., Sweeney, C., Chipman, D., Goddard, J., Marubini, F., Aceves, H., Barnett, H., and Atkinson, M. J.: Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef, Global Biogeochem. Cy., 14, 639–654, 2000.
Langenbuch, M. and Pörtner, H. O.: High sensitivity to chronically elevated CO2 levels in a eurybathic marine sipunculid, Aquat. Toxicol., 70, 55–61, 2004.
Larsen, B. K., Pörtner, H. O., and Jensen, F. B.: Extra- and intracellular acid-base balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper, Mar. Biol., 128, 337–346, 1997.
Lee, C. G., Devlin, R. H., and Farrell, A. P.: Swimming performance, oxygen consumption and excess post-exercise oxygen consumption in adult transgenic and ocean-ranched Coho salmon, J. Fish Biol., 62, 753–766, 2003.
Legeay, A. and Massabuau, J. C.: Effect of salinity on hypoxia tolerance of resting green crabs, Carcinus maenas, after feeding, Mar. Biol., 136, 387–396, 2000.
Lindinger, M. I., Lauren, D. J., and McDonald, D. G.: Acid-base-balance in the sea mussel, Mytilus edulis, 3, Effects of environmental hypercapnia on intracellular and extracellular acid-base-balance, Mar. Biol. Lett., 5, 371–381, 1984.
Mangum, C. P.: Gas transport in the blood, in: Squid as Experimental Animals, edited by: Gilbert, D. L., Adelman Jr., E. J., and Arnold, J. M., Plenum, New York, 443–468, 1990.
McDonald, D. G., McMahon, B. R., and Wood, C. M.: Analysis of acid-base disturbances in the hemolymph following strenuous activity in the dungeness crab, Cancer-magister, J. Exp. Biol., 79, 47–58, 1979.
McGaw, I. J.: The interactive effects of exercise and feeding on oxygen uptake, activity levels, and gastric processing in the graceful crab Cancer gracilis, Physiol. Biochem. Zool., 80, 335–343, 2007.
McKenzie, D. J., Taylor, E. W., Dalla Valle, A. Z., and Steffensen, J. F.: Tolerance of acute hypercapnic acidosis by the European eel (Anguilla anguilla), J. Comp. Physiol., 172, 339–346, 2002.
McMahon, B. R., McDonald, D. G., and Wood, C. M.: Ventilation, oxygen-uptake and hemolymph oxygen-transport, following enforced exhausting activity in the dungeness crab Cancer magister, J. Exp. Biol., 80, 271–285, 1979.
Melzner, F., Mark, F. C., and Pörtner, H. O.: Role of blood-oxygen transport in thermal tolerance of the cuttlefish, Sepia officinalis, Integr. Comp. Biol., 47, 645–655, 2007.
Melzner, F., Göbel, S., Langenbuch, M., Gutowska, M. A., Pörtner, H. O., and Lucassen, M.: Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated sea water pCO2, Aquat. Toxicol., 92, 30–37, 2009.
Michaelidis, B., Ouzounis, C., Paleras, A., and Pörtner, H. O.: Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis, Mar. Ecol.-Prog. Ser., 293, 109–118, 2005.
Michaelidis, B., Spring, A., and Pörtner, H. O.: Effects of long-term acclimation to environmental hypercapnia on extracellular acid-base status and metabolic capacity in Mediterranean fish Sparus aurata, Mar. Biol., 150, 1417–1429, 2007.
Miles, H., Widdicombe, S., Spicer, J. I., and Hall-Spencer, J.: Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris, Mar. Pollut. Bull., 54, 89–96, 2007.
Milligan, C. L. and Wood, C. M.: Regulation of blood-oxygen transport and red-cell pHi after exhaustive activity in rainbow-trout (Salmo gairdneri) and starry flounder (Platichthys stellatus), J. Exp. Biol., 133, 263–282, 1987.
Nixon, M. and Mangold, K.: The early life of Sepia officinalis, and the contrast with that of Octopus vulgaris (Cephalopoda), J. Zool., 245, 407–421, 1998.
Odor, R. K. and Webber, D. M.: Invertebrate athletes – trade-offs between transport efficiency and power-density in cephalopod evolution, J. Exp. Biol., 160, 93–112, 1991.
Otero-Villanueva, M. D. M., Kelly, M. S., and Burnell, G.: How diet influences energy partitioning in the regular echinoid Psammechinus miliaris; constructing an energy budget, J. Exp. Mar. Biol. Ecol., 304, 159–181, 2004.
Pane, E. F. and Barry, J. P.: Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab, Mar. Ecol.-Prog. Ser., 334, 1–9, 2007.
Perry, S. F. and Gilmour, K.: An evaluation of factors limiting carbon-dioxide excretion by trout red-blood-cells in vitro, J. Exp. Biol., 180, 39–54, 1993.
Perry, S. F. and Gilmour, K. M.: Acid-base balance and CO2 excretion in fish: Unanswered questions and emerging models, Resp. Physiol. Neurobiol., 154, 199–215, 2006.
Piermarini, P. M., Choi, I. and Boron, W. F.: Cloning and characterization of an electrogenic Na/HCO3- cotransporter from the squid giant fiber lobe, Am. J. Physiol., 292, C2032–C2045, 2007.
Pörtner, H. O., Webber, D. M., Boutilier, R. G., and O'Dor, R. K.: Acid-base regulation in exercising squid (Illex illecebrosus, Loligo pealei), Am. J. Physiol., 261, R239–R246, 1991.
Pörtner, H. O., Reipschlager, A., and Heisler, N.: Acid-base regulation, metabolism and energetics in Sipunculus nudus as a function of ambient carbon dioxide level, J. Exp. Biol., 201, 43–55, 1998.
Pörtner, H. O., Langenbuch, M., and Reipschlager, A.: Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history, J. Oceanogr., 60, 705–718, 2004.
Pörtner, H. O.: Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view, Mar. Ecol.-Prog. Ser., 373, 203–217, 2008.
Ramnanan, C. J. and Storey, K. B.: Suppression of Na+/K+-ATPase activity during estivation in the land snail Otala lacteal, J. Exp. Biol., 209, 677–688, 2006.
Randall, D.: The control of respiration and circulation in fish during exercise and hypoxia, J. Exp. Biol., 100, 275–285, 1982.
Randall, D. and Daxboeck, C.: Oxygen and carbon-dioxide transport across fish gills, Fish Physiol., 10, 263–314, 1984.
Scarabello, M., Heigenhauser, G. J. F., and Wood, C. M.: The oxygen debt hypothesis in juvenile rainbow-trout after exhaustive exercise, Resp. Physiol., 84, 245–259, 1991.
Schipp, R., Mollenhauer, S., and Vonboletzky, S.: Electron microscopical and histochemical-studies of differentiation and function of the cephalopod gill (Sepia officinalis L), Zoomorphologie, 93, 193–207, 1979.
Seibel, B. A., Thuesen, E. V., Childress, J. J., and Gorodezky, L. A.: Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency, Biol. Bull., 192, 262–278, 1997.
Seibel, B. A. and Childress, J. J.: Metabolism of benthic octopods (Cephalopoda) as a function of habitat depth and oxygen concentration, Deep-Sea Res. Pt. I, 47, 1247–1260, 2000.
Seibel, B. A. and Walsh, P. J.: Carbon cycle – Potential, impacts of CO2 injection on deep-sea biota, Science, 294, 319–320, 2001.
Seibel, B. A. and Walsh, P. J.: Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance, J. Exp. Biol., 206, 641–650, 2003.
Shadwick, R. E., Odor, R. K., and Gosline, J. M.: Respiratory and cardiac-function during exercise in squid, Can. J. Zool., 68, 792–798, 1990.
Siikavuopio, S. I., Mortensen, A., Dale, T., and Foss, A.: Effects of carbon dioxide exposure on feed intake and gonad growth in green sea urchin, Strongylocentrotus droebachiensis, Aquaculture, 266, 97–101, 2007.
Somero, G. N. and Childress, J. J.: A violation of the metabolism-size scaling paradigm – activities of glycolytic-enzymes in muscle increase in larger-size fish, Physiol. Zool., 53, 322–337, 1980.
Spicer, J. I., Taylor, A. C., and Hill, A. D.: Acid-base status in the sea-urchins Psammechinus miliaris and Echinus esculentus (Echinodermata: Echinoidea) during emersion, Mar. Biol., 99, 527–534, 1988.
Spicer, J. I., Raffo, A., and Widdicombe, S.: Influence of CO2-related seawater acidification on extracellular acid-base balance in the velvet swimming crab Necora puber, Mar. Biol., 151, 1117–1125, 2007.
Steffensen, J. F., Tufts, B. L., and Randall, D. J.: Effect of burst swimming and adrenaline infusion on O2 consumption and CO2 excretion in rainbow-trout, Salmo-gairdneri, J. Exp. Biol., 131, 427–434, 1987.
Sukhotin, A. A., Abele, D., and Portner, H. O.: Growth, metabolism and lipid peroxidation in Mytilus edulis: age and size effects, Mar. Ecol.-Prog. Ser., 226, 223–234, 2002.
Taylor, H. H. and Taylor, E. W: Gills and lungs: the exchange of gases, In: Microscopic Anatomy of Invertebrates, Decapod Crustacea: Wiley-Liss, New York, Volume 10, 1997.
Thomas, S.: Changes in blood acid-base-balance in trout (Salmo gairdneri) following exposure to combined hypoxia and hypercapnia, J. Comp. Physiol., 152, 53–57, 1983.
Thomas, S., Poupin, J., Lykkeboe, G., and Johansen, K.: Effects of graded-exercise on blood-gas tensions and acid-base characteristics of rainbow-trout, Resp. Physiol., 68, 85–97, 1987.
Thomsen, J.: Ion and acid-base regulation in marine invertebrates in reponse to altered carbonate system parameters, Diploma Thesis, Univ. Kiel, 63 pp., 2009.
Thorson, G.: Reproductive and larval ecology of marine bottom invertebrates, Biol. Rev., 25, 1–45, 1950.
Thorson, G.: Some factors influencing the recruitment and establishment of marine benthic communities, Neth. J. Sea Res., 3, 267–293, 1966.
Torres, J. J., Belman, B. W., and Childress, J. J.: Oxygen-consumption rates of midwater fishes as a function of depth of occurrence, Deep-Sea Res., 26, 185–197, 1979.
Truchot, J. P.: Effect of hypercapnia on acid-base status of blood in crab Carcinus maenas (L)(Crustacea-Decapoda), Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie D, 280, 311–314, 1975.
Truchot, J. P.: Carbon-dioxide combining properties of blood of shore crab Carcinus maenas L – carbon-dioxide solubility coefficient and carbonic-acid dissociation-constants, J. Exp. Biol., 64, 45–57, 1976.
Truchot, J. P.: Mechanisms of the compensation of blood respiratory acid-base disturbances in the shore crab, Carcinus maenas (L), J. Exp. Zool., 210, 407–416, 1979.
Truchot, J. P. and Duhameljouve, A.: Oxygen and carbon-dioxide in the marine inter-tidal environment – diurnal and tidal changes in rockpools, Resp. Physiol., 39, 241–254, 1980.
Tufts, B. L. and Perry, S. F.: Carbon dioxide transport and excretion, In: Carbon dioxide transport and excretion, Fish Physiology v17 Fish Respiration: Academic Press, San Diego, 229–281 pp., 1998.
Tunnicliffe, V., Davies, K. T. A., Butterfield, D. A., Embley, R. W., Rose, J. M., and Chadwick, W. W.: Survival of mussels in extremely acidic waters on a submarine volcano, Nature Geosci., 2, 344–348, 2009.
Vahl, O.: The relationship between specific dynamic action (SDA) and growth in the common starfish, Asterias rubens L., Oecologia, 61, 122–125, 1984.
Van den Thillart, G. D., Randall, D., and Hoa-Ren, L.: CO2 and H+ excretion by swimming coho salmon, Oncorhynchus kisutch, J. Exp. Biol., 107, 169–180, 1983.
Virkki, L. V., Choi, I., Davis, B. A., and Boron, W. F.: Cloning of a Na+-driven Cl/HCO3- exchanger from squid giant fiber lobe, Am. J. Physiol., 285, C771–C780, 2003.
Watt, A. J. S., Whiteley, N. M., and Taylor, E. W.: An in situ study of respiratory variables in three British sublittoral crabs with different routine rates of activity, J. Exp. Mar. Biol. Ecol., 239, 1–21, 1999.
Webber, D. M. and Odor, R. K.: Monitoring the metabolic-rate and activity of free-swimming squid with telemetered jet pressure, J. Exp. Biol., 126, 205–224, 1986.
Webster, S. K.: Oxygen-consumption in echinoderms from several geographical locations, with particular reference to Echinoidea, Biol. Bull., 148, 157–164, 1975.
Weigelt, M. and Rumohr, H.: Effects of wide-range oxygen depletion on benthic fauna and demersal fish in Kiel Bay 1981–1983, Rep. Mar. Res., 31, 124–136, 1986.
Wells, M. J., Odor, R. K., Mangold, K., and Wells, J.: oxygen-consumption in movement by octopus, Mar. Behav. Physiol., 9, 289–303, 1983.
Wheatly, M. G. and Henry, R. P.: Extracellular and intracellular acid-base regulation in crustaceans, J. Exp. Zool., 263, 127–142, 1992.
Widdicombe, S. and Spicer, J. I.: Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us? J. Exp. Mar. Biol. Ecol., 366, 187–197, 2008.
Widdows, J.: Effect of temperature and food on heart beat, ventilation rate and oxygen-uptake of Mytilus edulis, Mar. Biol., 20, 269–276, 1973.
Willson, L. L., and Burnett, L. E.: Whole animal and gill tissue oxygen uptake in the Eastern oyster, Crassostrea virginica: Effects of hypoxia, hypercapnia, air exposure, and infection with the protozoan parasite Perkinsus marinus, J. Exp. Mar. Biol. Ecol., 246, 223–240, 2000.
Wilson, J. M., Laurent, P., Tufts, B. L., Benos, D. J., Donowitz, M., Vogl, A. W., and Randall, D. J.: NaCl uptake by the branchial epithelium in freshwater teleost fish: An immunological approach to ion-transport protein localization, J. Exp. Biol., 203, 2279–2296, 2000.
Wood, C. M. and Munger, R. S.: Carbonic-anhydrase injection provides evidence for the role of blood acid-base status in stimulating ventilation after exhaustive exercise in rainbow-trout, J. Exp. Biol., 194, 225–253, 1994.
Wood, H. L., Spicer, J. I., and Widdicombe, S.: Ocean acidification may increase calcification rates, but at a cost, P. Roy. Soc. B-Biol. Sci., 275, 1767–1773, 2008.
Wootton, J. T., Pfister, C. A., and Forester, J. D.: Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset, P. Natl. Acad. Sci. USA, 105, 18848–18853, 2008.
Yamamoto, K.: Increase of arterial O2 content in exercised yellowtail (Seriola quinqueradiata), Comp. Biochem. Physiol., 98, 43–46, 1991.