Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants

Plant, Cell and Environment - Tập 42 Số 4 - Trang 1087-1103 - 2019
Wenqiang Shi1, Yuhong Zhang1, Shaoliang Chen2, Andrea Polle2,3, Heinz Rennenberg4, Zhi‐Bin Luo1
1State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of The State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
2Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
3Forest Botany and Tree Physiology, University of Goettingen, 37077 Göttingen, Germany
4Institute for Forest Sciences University of Freiburg 79110 Freiburg Germany

Tóm tắt

AbstractUptake, translocation, detoxification, and sequestration of heavy metals (HMs) are key processes in plants to deal with excess amounts of HM. Under natural conditions, plant roots often establish ecto‐ and/or arbuscular‐mycorrhizae with their fungal partners, thereby altering HM accumulation in host plants. This review considers the progress in understanding the physiological and molecular mechanisms involved in HM accumulation in nonmycorrhizal versus mycorrhizal plants. In nonmycorrhizal plants, HM ions in the cells can be detoxified with the aid of several chelators. Furthermore, HMs can be sequestered in cell walls, vacuoles, and the Golgi apparatus of plants. The uptake and translocation of HMs are mediated by members of ZIPs, NRAMPs, and HMAs, and HM detoxification and sequestration are mainly modulated by members of ABCs and MTPs in nonmycorrhizal plants. Mycorrhizal‐induced changes in HM accumulation in plants are mainly due to HM sequestration by fungal partners and improvements in the nutritional and antioxidative status of host plants. Furthermore, mycorrhizal fungi can trigger the differential expression of genes involved in HM accumulation in both partners. Understanding the molecular mechanisms that underlie HM accumulation in mycorrhizal plants is crucial for the utilization of fungi and their host plants to remediate HM‐contaminated soils.

Từ khóa


Tài liệu tham khảo

Aggangan N. S., 2012, Selection of ectomycorrhizal fungi and tree species for rehabilitation of Cu [copper] mine tailings in the Philippines, Journal of Environmental Science and Management, 15, 59

10.1080/02772248.2017.1413652

10.1016/j.etap.2014.07.013

10.3389/fpls.2014.00105

10.1007/s10661-015-4557-8

10.1080/15226514.2015.1131242

10.1002/jpln.200521925

10.1099/00221287-146-5-1109

10.1016/j.fgb.2010.11.003

10.1038/ncomms1046

10.1042/BJ20090655

10.1105/tpc.109.073023

10.1007/s00572-016-0686-3

10.1007/s11356-013-1506-3

10.1016/j.chemosphere.2016.04.049

10.1016/j.ecoenv.2014.12.033

10.1093/treephys/tpu042

10.1093/jxb/erw270

10.1093/aob/mcq170

10.1016/j.envexpbot.2011.08.012

10.3832/ifor1045-007

10.1146/annurev-arplant-043015-112301

10.1046/j.1469-8137.2003.00785.x

10.1007/BF00007874

10.1007/s13595-010-0003-9

10.1016/bs.abr.2016.12.005

10.3389/fmicb.2017.02320

10.1104/pp.106.095133

10.1093/jxb/ers104

10.1039/C4MT00182F

10.1093/treephys/tpx132

10.1111/nph.13472

10.1111/j.1365-313X.2004.02143.x

10.1016/j.jplph.2017.04.020

10.1007/s00572-008-0174-5

10.1093/jxb/err384

10.1155/2015/756120

10.1007/s10534-013-9658-7

10.1104/pp.15.01194

10.1111/pce.12963

10.1016/j.jhazmat.2017.04.065

10.1046/j.1365-3040.2000.00637.x

10.1007/s11104-016-2893-2

10.1111/j.1469-8137.1993.tb03932.x

Garg N., 2014, Cadmium toxicity in crop plants and its alleviation by arbuscular mycorrhizal (AM) fungi: An overview, Giornale Botanico Italiano, 148, 609

10.1007/s00344-017-9708-4

10.1016/j.plantsci.2016.11.016

10.1016/S0045-6535(97)10120-5

10.1016/j.envpol.2004.01.004

10.1016/j.fgb.2004.10.007

10.1007/s00572-009-0273-y

10.1007/s00572-007-0108-7

10.1139/W07-119

10.1080/15226514.2017.1284751

10.1186/1471-2148-11-76

10.5141/JEFB.2011.041

10.1038/nature06877

10.1016/j.nbt.2013.07.002

10.1111/nph.13013

10.1111/j.1399-3054.2011.01487.x

10.1104/pp.113.215681

10.1016/j.phytochem.2006.09.023

10.1016/S1002-0160(13)60049-1

10.1007/s11270-011-0915-5

10.1105/tpc.020487

10.1021/es400113y

10.1080/15226510208500083

10.1080/10889868.2013.847401

10.1093/treephys/tpq070

10.1016/j.jplph.2013.10.011

10.1111/j.1365-313X.2009.03818.x

10.1093/pcp/pci015

10.1016/j.ijheh.2013.02.010

10.1016/j.copbio.2005.02.006

10.1016/j.envpol.2008.06.038

10.1007/s11104-011-1098-y

10.1038/sj.emboj.7600864

10.1104/pp.109.150946

10.1007/s12374-016-0237-7

10.1007/s11104-016-2834-0

10.3389/fpls.2013.00374

10.1039/C4MT00141A

10.1007/s005720050174

10.1371/journal.pone.0149750

10.1371/journal.pone.0038662

10.1016/j.apsoil.2015.01.006

10.1111/nph.14622

10.1007/s10646-014-1331-6

10.1104/pp.010731

10.1016/j.biotechadv.2016.07.003

10.1104/pp.109.143735

10.1051/forest:2008073

10.1016/j.envexpbot.2011.04.008

10.1016/j.envexpbot.2013.10.018

10.1093/jxb/erq281

10.1093/treephys/tpy069

10.1111/pce.12183

10.1111/1758-2229.12176

10.1016/S1369-5266(99)00054-0

10.1046/j.1365-2745.2003.00829.x

10.1111/j.1365-313X.2008.03410.x

10.1016/j.plantsci.2016.09.010

10.1007/s00018-010-0445-0

10.1104/pp.109.144675

10.1046/j.1365-313X.2003.01790.x

10.1111/tpj.12480

10.1093/jxb/ers315

10.1016/j.biotechadv.2011.04.006

10.1016/j.chemosphere.2016.12.093

10.1007/s40502-017-0300-5

10.1104/pp.108.130294

10.1007/s11270-011-0868-8

10.1264/jsme2.ME13093

10.1111/1462-2920.13729

10.1007/s12010-009-8565-4

10.1016/j.plaphy.2012.11.016

10.1111/j.1365-313X.2011.04789.x

10.3389/fpls.2015.00133

10.1073/pnas.0609507104

10.1073/pnas.97.9.4956

10.1073/pnas.171039798

10.1038/sj.embor.7400445

10.1074/jbc.M111.305649

10.1016/S0958-1669(97)80106-1

10.1007/s10534-008-9163-6

10.1111/1462-2920.13149

10.1099/mic.0.080218-0

10.3389/fpls.2013.00144

10.1073/pnas.210214197

10.1016/j.chemosphere.2014.04.023

10.1007/s40626-016-0081-7

10.1111/1758-2229.12551

10.1016/j.flora.2017.05.011

10.1007/s11356-014-4044-8

10.1016/j.envpol.2017.01.071

10.1016/j.tplants.2010.06.004

10.1093/jexbot/53.372.1351

10.1007/s11104-005-7084-5

10.1111/j.1365-3040.2011.02338.x

10.1007/s00572-015-0647-2

10.1016/j.tplants.2016.12.005

10.1111/pce.12706

10.1111/pce.12434

10.1016/j.jhazmat.2018.09.024

Smith S. E., 2008, Mycorrhizal symbiosis

10.1016/j.scitotenv.2011.10.053

10.1016/j.apsoil.2013.12.005

10.1007/s005720000090

10.1046/j.1365-313x.2000.00768.x

Tao Q., 2017, The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii, Journal of Experimental Botany, 68, 739

10.1073/pnas.97.9.4991

10.1093/jxb/erx112

10.1046/j.1469-8137.2001.00081.x

10.1039/B913299F

10.1016/S0953-7562(96)80094-3

Wang Y., 2015, Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.), Frontiers in Plant Science, 6, 293

10.1007/s12011-007-0022-z

10.1080/15226514.2016.1244155

10.1016/j.jplph.2010.06.005

10.1016/j.tplants.2005.08.008

10.1371/journal.pone.0145726

10.1039/C5RA05717E

10.1104/pp.119.3.1047

10.1016/S0378-1119(96)00422-2

10.3389/fpls.2017.01975

10.1021/es5047099

10.1039/C7MT00072C

10.1016/j.plaphy.2017.06.029

10.1007/s10310-015-0506-1