Mô Hình Mạng Thông Tin Vật Lý: Một Cách Tiếp Cận Khoa Học Dữ Liệu Đối Với Thiết Kế Kim Loại

Integrating Materials and Manufacturing Innovation - Tập 6 Số 4 - Trang 279-287 - 2017
Amit K. Verma1, Roger H. French1, Jennifer L. W. Carter1
1Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA

Tóm tắt

Tóm tắt

Vật liệu có độ dày thay đổi chức năng (FGM) cho phép hòa giải những ràng buộc thiết kế mâu thuẫn ở những vị trí khác nhau trong vật liệu. Việc tối ưu hóa này cần có kiến thức trước về cách mà các biện pháp kiến trúc khác nhau tương tác lẫn nhau và kết hợp để kiểm soát hiệu suất vật liệu. Trong nghiên cứu này, một FGM bằng nhôm đã được sử dụng làm hệ thống mô hình để trình bày một cách tiếp cận mô hình mạng mới, đem lại khả năng nhận thức mối quan hệ giữa các tham số thiết kế và cho phép việc giải thích dễ dàng. Cách tiếp cận này, theo một cách không thiên lệch, đã thành công trong việc nắm bắt các mối quan hệ mong đợi và có khả năng dự đoán độ cứng như một hàm của thành phần.

Từ khóa


Tài liệu tham khảo

(2011) Materials genome initiative for global competitiveness. Tech. rep. https://www.mgi.gov/about

Arnold SM, Holland F, Gabb TP, Nathal M, Wong TT (2013) American institute of aeronautics and astronautics. https://doi.org/10.2514/6.2013-1850

Arnold SM, Holland F, Bednarcyk BA (2014) American institute of aeronautics and astronautics. https://doi.org/10.2514/6.2014-0460

Miracle D, Majumdar B, Wertz K, Gorsse S (2017) Scr Mater 127(Supplement C):195. https://doi.org/10.1016/j.scriptamat.2016.08.001. http://www.sciencedirect.com/science/article/pii/S1359646216303657

Lingerfelt EJ, Belianinov A, Endeve E, Ovchinnikov O, Somnath S, Borreguero JM, Grodowitz N, Park B, Archibald RK, Symons CT, Kalinin SV, Messer OEB, Shankar M, Jesse S (2016) Procedia computer science 80(Supplement C):2276. https://doi.org/10.1016/j.procs.2016.05.410. http://www.sciencedirect.com/science/article/pii/S1877050916308869

Kalidindi SR, De Graef M (2015) Materials Data Science: Current Status and Future Outlook. Annu Rev Mater Res 45(1):171–193. https://doi.org/10.1146/annurev-matsci-070214-020844

Jacobsen MD, Benedict MD, Foster BJ, Ward CH, Foster BJ, Jacobsen MD, Benedict MD (2015). In: Proceedings of the 3rd world congress on integrated computational materials engineering (ICME 2015). Springer, Cham, pp 285–292. https://doi.org/10.1007/978-3-319-48170-8_34. https://link.springer.com/chapter/10.1007/978-3-319-48170-8_34

Jacobsen MD, Fourman JR, Porter KM, Wirrig EA, Benedict MD, Foster BJ, Ward CH, Jacobsen MD, Foster BJ, Fourman JR, Benedict MD, Porter KM, Wirrig EA (2016) Creating an integrated collaborative environment for materials research. Integr Mater Manuf Innov 5(1):12. https://doi.org/10.1186/s40192-016-0055-2. https://link.springer.com/article/10.1186/s40192-016-0055-2

Havlin S, Kenett DY, Ben-Jacob E, Bunde A, Cohen R, Hermann H, Kantelhardt JW, Kertész J, Kirkpatrick S, Kurths J, Portugali J, Solomon S (2012) The European Physical Journal Special Topics 214(1):273. https://doi.org/10.1140/epjst/e2012-01695-x. http://link.springer.com/article/10.1140/epjst/e2012-01695-x

Nibbe RK, Koyutürk M, Chance MR (2010) PLOs Comput Biol 6(1):e1000639. https://doi.org/10.1371/journal.pcbi.1000639

Steinhaeuser K, Chawla NV, Ganguly AR (2011) Statistical Analysis and Data Mining 4(5):497. https://doi.org/10.1002/sam.10100. http://onlinelibrary.wiley.com/doi/10.1002/sam.10100/abstract

Bhadeshia HKDH (1999) ISIJ Int 39(10):966. https://doi.org/10.2355/isijinternational.39.966

Bhadeshia HKDH (2009) Neural Networks and Information in Materials Science. Statistical Analy Data Mining 1(5):296–305. https://doi.org/10.1002/sam.10018. http://onlinelibrary.wiley.com/doi/10.1002/sam.10018/abstract

Sha W, Edwards KL (2007) Mater Des 28(6):1747. https://doi.org/10.1016/j.matdes.2007.02.009. http://www.sciencedirect.com/science/article/pii/S0261306907000520

Hoyle RH (2012) Handbook of structural equation modeling, 1st edn. The Guilford Press, New York

French RH, Podgornik R, Peshek TJ, Bruckman LS, Xu Y, Wheeler NR, Gok A, Hu Y, Hossain MA, Gordon DA, Zhao P, Sun J, Zhang G-Q (2015) Curr Opinion Solid State Mater Sci 19(4):212. https://doi.org/10.1016/j.cossms.2014.12.008. http://www.sciencedirect.com/science/article/pii/S1359028614000989

Faraway JJ (2004) Linear models with R, 1st edn. Chapman and Hall/CRC, Boca Raton

Wheeler N, Xu Y, Du W, Gok A, Ma J, Bruckman L, Elsaeiti M, Sun J, French R (2013) Semi-supervised generalized structural equation modeling. https://github.com/vuvlab/sgsem

Mitchell TM (1997) Machine learning, 1st edn. McGraw-Hill Education, New York

White H, Gallant AR, Hornik K, Stinchcombe M, Wooldridge J (1992) Artificial neural networks: approximation and learning theory, illustrated edition edition edn. Blackwell Pub, Oxford

Skinner AJ, Broughton JQ (1995) Model Simul Mater Sci Eng 3(3):371. https://doi.org/10.1088/0965-0393/3/3/006. http://stacks.iop.org/0965-0393/3/i=3/a=006

Rioja RJ, Sawtell RR, Chu MG, Karabin M, Cassada WA, Karabin M (2012) Functional Gradient Products Enabled by Planar Solidification Technologies. Springer, Pittsburgh, pp 1383–1388. https://link.springer.com/chapter/10.1007/978-3-319-48761-8_211. https://doi.org/10.1007/978-3-319-48761-8_211

Chu M, Giron A, Cassada W (2012) The Minerals, Metals and Materials Society, Pittsburgh, pp 1367–1375

Chu MG, Yu H, Giron A, Kallaher K (2007) Method of unidirectional solidification of castings and associated apparatus. http://www.google.com/patents/US7264038. U.S. Classification 164/122.1, 164/133, 164/337; International Classification B22D35/04, B22D27/04, B22D37/00, B22D35/00; Cooperative Classification B22D27/045, B22D7/00; European Classification B22D27/04A

(2015) International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys. The Alumninum Association, Arlington, pp 38. http://www.aluminum.org/sites/default/files/TEAL_1_OL_2015.pdf

Deshpande NU, Ray KK, Mallik AK (1986) 2:108. http://mio.asminternational.org/apd/viewPicture.aspx?dbKey=grantami_apd&id=10757508&revision=421381

Balderach DC, Hamilton JA, Leung E, Cristina Tejeda M, Qiao J, Taleff EM (2003) Mater Sci Eng A 339(1–2):194. https://doi.org/10.1016/S0921-5093(02)00158-2. http://www.sciencedirect.com/science/article/pii/S0921509302001582

Fleischer RL (1963) Acta Metallurgica 11(3):203. https://doi.org/10.1016/0001-6160(63)90213-X. http://www.sciencedirect.com/science/article/pii/000161606390213X

Labusch R (1970) Phys Stat Sol (b) 41(2):659. https://doi.org/10.1002/pssb.19700410221. http://onlinelibrary.wiley.com/doi/10.1002/pssb.19700410221/abstract

Orowan E (1948) Institute of metals, London, pp 451–453

Guo Z, Sha W (2002) Mater Trans 43(No. 6):1273

Hall EO (1951) Proc Phys Soc B 64(9):747. https://doi.org/10.1088/0370-1301/64/9/303. http://stacks.iop.org/0370-1301/64/i=9/a=303

Petch NJ (1953) J Iron Steel Inst Jpn 174:25

Tiryakioğlu M (2015) Materials science and engineering: A 633:17. https://doi.org/10.1016/j.msea.2015.02.073. http://www.sciencedirect.com/science/article/pii/S0921509315002014

R Core Team (2015) R: a language and environment for statistical computing, R Foundation for Statistical Computin, Vienna. https://www.R-project.org/

RPubs - Predictive R-squared according to Tom Hopper. https://rpubs.com/RatherBit/102428

Bunge H (1970) Krist Techn 5:145. https://doi.org/10.1002/crat.19700050112

Schmid E, Boas W (1968) Plasticity of crystals with special reference to metals. Chapman & Hall, London

Bruckman LS, Wheeler NR, Ma J, Wang E, Wang CK, Chou I, Sun J, French RH (2013) IEEE Access 1:384. https://doi.org/10.1109/ACCESS.2013.2267611. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6527980