Physicochemical, functional and structural characterization of Mexican Oxalis tuberosa starch modified by cross-linking

Lucila Concepción Núñez-Bretón1, Liliana Catalina Cruz-Rodríguez2, María Luisa Tzompole-Colohua2, Jaime Jiménez-Guzmán2, María de Jesús Perea-Flores3, Walfred Rosas-Flores4, Francisco Erik González-Jiménez2
1Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados “CINVESTAV-IPN”, Instituto Politécnico Nacional, Ciudad de México, México
2Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, México
3Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico Nacional, Ciudad de México, México
4Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México/I.T. Durango., Durango, México

Tóm tắt

Chemical modification of the native starch of Mexican Oxalis tuberosa was studied by cross-linking it with different concentrations of epichlorohydrin (0.5–2%). The results showed an extraction yield of 65.1 ± 0.20% (dry basis) for native starch, which can be considered as a potential unconventional source for starch extraction. The amylose contents of native and modified starch decreased from 24.66 to 13.57%, respectively. X-ray diffraction analysis showed an increase in the crystalline part in modified starch. The chemical modification changed the functional properties of starch. The clarity of the paste determined by spectrophotometer at 650 nm showed an inversely proportional relationship with the epichlorohydrin concentration. The lipid absorption index showed an increase up to 210% (using 2% epichlorohydrin) compared to that of native starch. The structure was analyzed by SEM and showed granules before and after the modification an ellipsoid morphology while the polarized light microscopy analysis showed birefringence patterns. The average diameter of the granules evaluated using a particle size analyzer (CILAS) ranged between 31.46 μm and 35.32 μm for modified starch and was 30.36 μm for the native starch, both higher than that of the corn-starch granules (16.10 μm). This makes the Mexican O. tuberosa an option for starch extraction and for application in the food industry.

Từ khóa


Tài liệu tham khảo

X. Fan, S. Zhang, L. Lin, L. Zhao, A. Liu, C. Wei, Food Hydrocoll. 61, 183–190 (2016)

M. Wei, R. Andersson, G. Xie, S. Salehi, D. Boström, Starch/Starkë 70, 5–6 (2018)

K. Guo, L. Lin, X. Fan, L. Zhang, C. Wei, Food Chem. 257, 75–82 (2018)

R.C. Turola-Barbi, G. Lopes-Teixeira, P.S. Silveira-Hornung, S. Ávila, R.H. Ribani, Food Hydrocoll. 77, 646–658 (2018)

K. Jamir, K. Seshagirirao, Food Hydrocoll. 72, 247–253 (2017)

A.R. Cortella, M.L. Pochettino, Starch/Starkë 47, 455–461 (1995)

A.N. Hernández-Lauzardo, J. Solorza-Feria, L.A. Bello-Pérez, Starch/Starkë 56, 357–363 (2004)

A.O. Oladebeye, A.A. Oshodi, I.A. Amoo, A.A. Karim, A.A. Oladebeye, Food Meas. 13, 16–25 (2019)

M. Sjӧӧ, L. Nilsson, Starch Food: Structure, Function and Applications, 2nd edn. (Woodhead, Cambridge, 2018)

T. Mehfooz, T.M. Ali, A. Hasnain, J. Food Meas. Charact. 13, 1058–1069 (2019)

H. Heo, Y. Lee, Y.H. Chang, Int. J. Food Prop. 20, 2138–2150 (2017)

M. Kim, S. Lee, Carbohydr. Polym. 50, 331–337 (2002)

ISO, Rice—Determination of amylose content—Part 1: Referencen method (2007)

K.S. Aplevicz, I.M. Demiate, Ciênc. Technol. Aliment 27, 478–484 (2007)

A. Timgren, M. Rayner, P. Dejmek, D. Marku, Food Sci. Nutr. 1, 157–171 (2013)

M. Sánchez-Becerril, A.G. Marangoni, M.J. Perea-Flores, N. Cayetano-Castro, H. Martinez-Gutiérrez, J.A. Andraca-Adame, J. Pérez-Martinez, Food Struct. 16, 1–7 (2018)

J. Jiménez-Guzmán, D.E. Leyva-Daniel, B.H. Camacho-Díaz, A.R. Jimenéz-Aparicio, in Sustainable Drying Technologies, ed. by I. J. del Real Olvera (IntechOpen, London, 2016), pp. 79–94

J. Colivet, R.A. Carvalho, Ind. Crop. Prod. 95, 599–607 (2016)

F.F. Velásquez-Barreto, L.A. Bello-Pérez, H. Yee-Madeira, C.E. Velezmoro-Sánchez, Starch/Starkë 71, 1–8 (2018)

J. Singh, L. Kaur, M.A. Burlinton, Advances in Potato Chemistry and Technology, 2nd edn. (Academic Press Editorial Elsevier Inc., San Diego, 2016), p. 752

O.S. Kittipongpatana, N. Kittipongpatana, Food Chem. 141, 1438–1444 (2013)

S. Wang, C. Li, L. Copeland, Q. Niu, S. Wang, Compr. Rev. Food Sci. Food Saf.14, 568–585 (2015)

A.N. Jyothi, S.N. Moorthy, K.N. Rajasekharan, Starch/Starkë 58, 292–299 (2006)

S. Hedayati, M. Niakousari, Food Hydrocoll. 81, 1–5 (2018)

R. Verma, S. Jan, S. Rani, T.L. Swer, K.S. Prakash, M.Z. Dar, Radiat. Phys. Chem. 144, 37–42 (2018)

D. Chandanasree, K. Gul, C.S. Riar, Food Hydrocoll. 52, 175–182 (2016)

X. Kong, X. Zhou, Z. Sui, J. Bao, Int. J. Biol. Macromol. 91, 1141–1150 (2016)

Y.C. Lai, S.Y. Wang, H.Y. Gao, K.M. Nguyen, C.H. Nguyen, M.C. Shih, K.H. Lin, Food Chem. 199, 556–564 (2016)

D. Ackar, J. Babic, D. Šubaric, M. Kopjar, B. Milic, Carbohydr. Polym. 81, 76–82 (2010)

A. Marefati, B. Wiege, N.U. Haase, M. Matos, M. Rayner, Carbohydr. Polym. 175, 473–483 (2017)

L. Bai, S. Huan, Z. Li, D.J. Mcclements, Food Hydrocoll. 66, 144–153 (2017)

D.S. De Castro, M.I. Dos Santos, L.M. De Melo Silva, L.J. Pereira, W. Pereira da Silva, F.R. Feitosa, Food Res. Int., 90, 121–132 (2018)

J.H. Han, G.H. Seo, I.M. Park, G.N. Kim, D.S. Lee, Food Eng. Phys. Prop. 71, 290–296 (2006)

M. Xu, A.S.M. Saleh, B. Gong, B. Li, L. Jing, M. Gou, H. Jiang, W. Li, Food Res. Int. 111, 324–333 (2018)

B. Zhang, X. Li, J. Liu, F. Xie, L. Chen, Food Hydrocoll. 31, 68–73 (2013)