Physical and chemical characterization of biochars derived from different agricultural residues
Tóm tắt
Abstract. Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, which are strongly related to the type of the initial material used and pyrolysis conditions, is crucial to identify the most suitable application of biochar in soil. A selection of organic wastes with different characteristics (e.g., rice husk (RH), rice straw (RS), wood chips of apple tree (Malus pumila) (AB), and oak tree (Quercus serrata) (OB)) were pyrolyzed at different temperatures (400, 500, 600, 700, and 800 °C) in order to optimize the physicochemical properties of biochar as a soil amendment. Low-temperature pyrolysis produced high biochar yields; in contrast, high-temperature pyrolysis led to biochars with a high C content, large surface area, and high adsorption characteristics. Biochar obtained at 600 °C leads to a high recalcitrant character, whereas that obtained at 400 °C retains volatile and easily labile compounds. The biochar obtained from rice materials (RH and RS) showed a high yield and unique chemical properties because of the incorporation of silica elements into its chemical structure. The biochar obtained from wood materials (AB and OB) showed high carbon content and a high absorption character.
Từ khóa
Tài liệu tham khảo
Alburquerque, J. A., Salazar, P., Barrón, V., José Torrent, J., Campillo M.C., Gallardo A., and Villar, R.: Enhanced wheat yield by biochar addition under different mineral fertilization levels, Agron. Sustain. Dev., 33, 475–484, 2013
Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., and Sizmur, T.: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils, Environ. Pollut., 159, 3269–3282, 2011.
Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A., and Brown R. C.: Characterization of biochar from Fast pyrolysis and gasification systems, Environ. Prog. Sustain. Energy, 28, 386–396, 2009.
Cabrera, A., Cox, L., Spokas, K. A., Celis, R., Hermosín, M. C., Cornejo, J., and Koskinen, W. C.: Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2 methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents, J. Agri. Food Chem., 14, 12550–12560, 2011.
Calvelo, P. R., Kaal, J., Camps-Arbestain, M., Lorenzo P. R., Aitkenhead, W., Hedley, M., Macias, F., Hindmarsh, J., and Macia-Agullo, J. A.: Contribution to characterisation of biochar to estimate the labile fraction of carbon, Org. Geochem., 42, 1331–1342, 2011.
Chen, B. and Chen, Z.: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures, Chemosphere, 76, 127-133, 2009.
Dong, X., Ma, L. Q., Zhu, Y., Li, Y., and Gu, B.: Mechanistic nvestigation of mercury sorption by brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry, Environ. Sci. Technol., 47, 12156–12164, 2013.
Enders, A., Hanley, K., Whitman, T., Joseph, S., and Lehmann, J.: Characterization of biochars to evaluate recalcitrance and agronomic performance, Bioresource. Technol., 114, 644–653, 2012.
Fellet, G., Marchiol, L., Delle Vedove, G., and, Peressotti, A.: Application of biochar on mine tailings: Effects and perspectives for land reclamation, Chemosphere, 83, 1262–1267, 2011.
Gaskin, J. W., Steiner, C., Harris, K. C., Das, C., and Bibens, B.: Effect of low-temperature pyrolysis conditions on biochar for agricultural use, Transactions of the Asabe, 51, 2061–2069, 2008.
Gaspard, S., Altenor, S., Dawson, E. A., Barnes P. A., and Ouensanga, A.: Activated carbon from vetiver roots: gas and liquid adsorption studies, J. Hazard. Mater., 144, 73–81, 2007.
Guo, J. and Chen, B., Insights on the molecular mechanism for the recalcitrance of biochar: interactive effects of carbon and silicon components. Environ. Sci. Technol. 48, 9103–9101, 2014.
Harvey, O. M., Herbert, B. E., Kuo, L. J., and Louchouarn, P.: Generalized two-dimensional perturbation correlation Infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars, Environ. Sci. Technol., 46, 10641–10650, 2012.
Haslinawati, M. M., Matori, K. A., Wahab, Z. A., Sidek, H. A. A., and Zainal, A. T.: Effects of temperature on the ceramic from rice husk ash, Int. J. Basic Appl. Sci., 9, 111–116, 2009.
Joseph, S., Graber, E. R., Chia, C., Munroe, P., Donne, S., Thomas, T., Nielsen, S., Marjo, C., Rutlidge, H., Pan, G. X., Li, L., Taylor, P., Rawal, A., and Hook, J.: Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components, Carbon Manage., 4, 323–343, 2013.
Kalderis, D., Kotti, M. S., Méndez, A., and Gascó, G.: Characterization of hydrochars produced by hydrothermal carbonization of rice husk, Solid Earth, 5, 477–483, 2014.
Khodadad, C. L. M., Zimmerman, A. R., Uthandi, S., Green. S. J. J., and Foster, J. S.: Taxa-specific changes in soil microbial composition induced by pyrogenic carbon amendments, Soil Biol. Biochem., 43, 385–392, 2011.
Knoblauch C. Maarifat A. A. Pfeiffer, E. M., and Haefele S. M.: Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils, Soil Biol. Biochem., 43, 1768–1778, 2011.
Lee, J. W., Kidder, M., Evans, B. R., Paik, S., Buchanan, A. C., Garten, C. T., and Brown, R. C.: Characterization of of biochars produced from cornstovers for soil amendment, Environ. Sci. Technol., 44, 7970–7974, 2010.
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., and Crowley, D.: Biochar effects on soil biota – A review, Soil Biol. Biochem., 43, 1812–1836, 2011.
Lei, O. and Zhang, R.: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties, J. Soil. Sedim., 13, 1561–1572, 2013.
Liu, Z. and Zhang, F. S.: Renoval of lead from water using biochars prepared from hydrothermal liquefaction o biomass, J. Hazard. Mater., 167, 933–939, 2009.
Mackay, D. M. and Roberts, P. V.: The influence of pyrolysis conditions on yield and microporosity of lignocellulosic chars, Carbon, 20, 95–105, 1982.
McBeath, A. V., Smernik, R. J., Krull, E. S., and Lehmann, J.: The influence of feedstock and production temperature on biochar carbon chemistry: A solid-state 13C NMR study, Biomass Bionenerg., 60, 121–129, 2013.
Mimmo, T., Panzacchi, P., Baratieri, M., Davies C. A., and Tonon, G.: Effect of pyrolysis temperature on miscanthus (Miscanthus x giganteus) biochar physical, chemical and functional properties, Biomass Bioenerg., 62, 149–157, 2014.
Mukherjee, A. and Zimmerman, A.: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures, Geoderma, 193, 122–130, 2013.
Mukome, F. N. D., Zhang, X., Silva, L. C. R., Six, J., and Parikh, S. J.: Use of chemical and physical characteristics to investigate trends in biochar feedstocks, J. Agric. Food Chem., 61, 2196–2204, 2013.
Nguyen, B. T. and Lehmann, J.: Black carbon decomposition under varying water regimes, Org. Geochem., 40, 846–853, 2009.
Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M., Rehrah, D., Watts, D. W., Busscher, W. J., and, Harry, S.: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand, Annals Environ. Sci., 3, 195–206, 2009.
Novak, J. M., Busscher, W. J., Watts, D. W., Laird, D. A., Ahmedna, M. A., and Niandou, M. A. S.: Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kaniudult, Geoderma, 154, 281–288, 2010.
Peng, X., Ye, L. L., Wang, C. H., Zhou, H., and Sun, B.: Temperature and duration-depend rice stra-derived biochar: characteristics and its effects on soil properties of an Untisol in southern China, Soil Tillage Res., 112, 159–166, 2011.
Robertson, S. J., Rutherford, M. P., López-Gutiérrez, J. C., and Massicotte, H. B.: Biochar enhances seedling growth and alters rootvsymbioses and properties of sub-boreal forest soils, Can. J. Soil Sci., 92, 329–340, 2012.
Rutherford, D. W., Wershaw, R. L., Rostad, C. E., and Kelly, C. N.: Effect of formation conditions on biochars: compositional and structural properties of cellulose, lignin, and pine biochars, Biomass Bioenerg., 46, 693–701, 2012.
Singh, B., Singh B. P., and Cowie, A. L.: Characterisation and evaluation of biochars for their applications a soil amendment, Aust. J. Soil Res., 48, 516–525, 2010.
Song, W. and Guo, M.: Quality variations of poultry litter biochar generated at different pyrolysis temperatures., J. Anal. Appl. Pyrol., 94, 138–145, 2011.
Spokas, K. A.: Review of the stability of biochar in soils: predictability of O : C molar ratios, Carbon Manage., 1, 289–303, 2010.
Suri, A. and Horio, M.: Solid biomass combustion, in: Handbook of Combustion vol. 4, Solid Fuels, edited by: Lackner, M., Winter, F., and Agarwal, A. K., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, chapter 3, 85–140, 2010.
Wang, X. L., Cook, R., Tao, S., and Xing, B. S.: Sorption of organic contaminants by biopolymers: Role of polarity, structure and domain spatial arrangement, Chemosphere, 66, 1476–1484, 2007.
Wilding, L. P., Brown, R. E., and Holowaychuk, N.: Asccesibility and properties of occluded carbon in biogenetic opal, Soil Sci., 103, 56–61, 1969.
Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., and Chen, Y.: Chemical characterization of rice straw-derived biochar for soil amendment, Biomass Bioenerg., 47, 268–276, 2012.
Xiao X., Chen B., and Zhu, L.: Transformation, Morphology, and Dissolution of Silicon and Carbon in Rice Straw-Derived Biochars under Different Pyrolytic Temperatures, Environ. Sci. Technol., 48, 3411–3419, 2014.
Xu, Y. and Chen, B.: Investigation of thermodynamic parametres in the pyrolysis conversion f biomass and manure to biochars using thermogravimetrisc analysis. Bioresource. Tenhnol., 146, 485–493, 2013.
Yang, H., Yan, R., Chen, H., Lee, D. H., and Zheng, C.G.: Characteristics of hemicellulose, cellulose, and lignin pyrolysis, Fuel, 86, 1781–1788, 2007.
Yu, J. T., Dehkhoda, A. M., and Ellis, N.: Development of biochar-based catalyst for transesterification of canola, Energy fuels 25, 337–344, 2011.
Yuan, J. H., Xu, R. K., and Zhang, H.: The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresource. Technol., 102, 3488–3497, 2010.