Phylogenetic Perspectives on the Origins of Nodulation

Molecular Plant-Microbe Interactions - Tập 24 Số 11 - Trang 1289-1295 - 2011
Jeff J. Doyle1,2
1E-mail Address: [email protected]
2e-mail:

Tóm tắt

Recent refinements to the phylogeny of rosid angiosperms support the conclusion that nodulation has evolved several times in the so-called N2-fixing clade (NFC), and provide dates for these origins. The hypothesized predisposition that enabled the evolution of nodulation occurred approximately 100 million years ago (MYA), was retained in the various lineages that radiated rapidly shortly thereafter, and was functional in its non-nodulation role for at least an additional 30 million years in each nodulating lineage. Legumes radiated rapidly shortly after their origin approximately 60 MYA, and nodulation most likely evolved several times during this radiation. The major lineages of papilionoid legumes diverged close to the time of origin of nodulation, accounting for the diversity of nodule biology in the group. Nodulation symbioses exemplify the concept of “deep homology,” sharing various homologous components across nonhomologous origins of nodulation, largely due to recruitment from existing functions, notably the older arbuscular mycorrhizal symbiosis. Although polyploidy may have played a role in the origin of papilionoid legume nodules, it did not do so in other legumes, nor did the prerosid whole-genome triplication lead directly to the predisposition of nodulation.

Từ khóa


Tài liệu tham khảo

10.3732/ajb.0900346

10.1186/1471-2164-10-45

10.1105/tpc.021345

10.1139/B08-058

10.1093/sysbio/syq072

10.1073/pnas.0603228103

10.1371/journal.pone.0011630

10.1111/j.1469-8137.2009.03124.x

10.1104/pp.110.169599

10.1016/j.pbi.2009.05.010

10.1146/annurev.es.25.110194.001545

10.1101/gr.3681406

10.1073/pnas.0710618105

10.1002/prot.21917

10.1105/tpc.109.069807

10.1080/713608153

Hocher, V., Alloisio, N., Auguy, F., Founier, P., Doumas, P., Pujic, P., Gherbi, H., Queiroux, C., Da Silva, C., Wincker, P., Normand, P., and Bogusz, D. 2011. Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol. Online publication. doi:10.1104/pp.111.174151.

10.1093/pcp/pcp178

10.1038/nrg2689

10.1038/nature06148

10.1038/nature09916

10.1080/10635150590947131

Lewis, G., Schrire, B., Mackinder, B., and Lock, M. 2005. Legumes of the World. Kew, Richmond, U.K.

10.1104/pp.109.148379

10.1186/1471-2164-10-313

10.1038/ncomms1009

10.1038/nature09622

10.1016/j.tplants.2008.11.009

10.1371/journal.pbio.0060068

10.1371/journal.pone.0016463

10.1126/science.1171644

10.1126/science.1198181

Pawlowski, K., and Sprent, J. I. 2008. Comparison between actinorhizal and legume symbiosis. Pages 261-288 in: Nitrogen-Fixing Actinorhizal Symbioses. K. Pawlowski and W. E. Newton, eds. Springer, Dordrecht, The Netherlands.

10.1080/10635150590945359

10.1371/journal.pbio.1000602

Sanderson, M. J., and Hufford, L., eds. 1996. Homoplasy: The Recurrence of Similarity in Evolution. Academic Press, London.

10.1139/g04-047

10.1038/nature08670

10.1038/nature07891

10.1073/pnas.92.7.2647

10.3732/ajb.0800079

10.1111/j.1469-8137.2007.02015.x

10.1093/jxb/erm286

Sprent, J. I. 2009. Legume Nodulation: A Global Perspective. Wiley-Blackwell, Ames, IA, U.S.A.

10.1104/pp.107.096156

10.1016/j.tig.2009.03.004

Swensen, S. M., and Benson, D. R. 2008. Evolution of actinorhizal host plants and Frankia endosymbionts. Pages 73-104 in: Nitrogen-Fixing Actinorhizal Symbioses. K. Pawlowski and W. E. Newton, eds. Springer, Dordrecht, The Netherlands.

10.1101/gr.080978.108

10.1186/gb-2007-8-4-r50

10.1126/science.1184057

10.1126/science.1188545

10.1126/science.1184096

10.1073/pnas.0813376106

10.1073/pnas.1011957107

10.1105/tpc.108.063693

10.1007/s00018-011-0651-4

10.1186/1471-2148-9-183