Photosystem II core quenching in desiccated Leptolyngbya ohadii
Tóm tắt
Cyanobacteria living in the harsh environment of the desert have to protect themselves against high light intensity and prevent photodamage. These cyanobacteria are in a desiccated state during the largest part of the day when both temperature and light intensity are high. In the desiccated state, their photosynthetic activity is stopped, whereas upon rehydration the ability to perform photosynthesis is regained. Earlier reports indicate that light-induced excitations in Leptolyngbya ohadii are heavily quenched in the desiccated state, because of a loss of structural order of the light-harvesting phycobilisome structures (Bar Eyal et al. in Proc Natl Acad Sci 114:9481, 2017) and via the stably oxidized primary electron donor in photosystem I, namely P700+ (Bar Eyal et al. in Biochim Biophys Acta Bioenergy 1847:1267–1273, 2015). In this study, we use picosecond fluorescence experiments to demonstrate that a third protection mechanism exists, in which the core of photosystem II is quenched independently.
Tài liệu tham khảo
Bar Eyal L, Eisenberg I, Faust A, Raanan H, Nevo R, Rappaport F, Krieger-Liszkay A, Sétif P, Thurotte A, Reich Z, Kaplan A, Ohad I, Paltiel Y, Keren N (2015) An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation. Biochim Biophys Acta Bioenergy 1847:1267–1273. https://doi.org/10.1016/j.bbabio.2015.07.008
Bar Eyal L, Ranjbar Choubeh R, Cohen E, Eisenberg I, Tamburu C, Dorogi M, Ünnep R, Appavou M-S, Nevo R, Raviv U, Reich Z, Garab G, van Amerongen H, Paltiel Y, Keren N (2017) Changes in aggregation states of light-harvesting complexes as a mechanism for modulating energy transfer in desert crust cyanobacteria. Proc Natl Acad Sci 114:9481. https://doi.org/10.1073/pnas.1708206114
Chukhutsina VU, Büchel C, van Amerongen H (2014) Disentangling two non-photochemical quenching processes in Cyclotella meneghiniana by spectrally-resolved picosecond fluorescence at 77 K. Biochim Biophys Acta Bioenergy 1837:899–907. https://doi.org/10.1016/j.bbabio.2014.02.021
Cser K, Vass I (2007) Radiative and non-radiative charge recombination pathways in photosystem II studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6803. Biochim Biophys Acta Bioenergy 1767:233–243. https://doi.org/10.1016/j.bbabio.2007.01.022
Eisenberg I, Caycedo-Soler F, Harris D, Yochelis S, Huelga SF, Plenio MB, Adir N, Keren N, Paltiel Y (2017) Regulating the energy flow in a cyanobacterial light-harvesting antenna complex. J Phys Chem B 121:1240–1247. https://doi.org/10.1021/acs.jpcb.6b10590
Garcia-Pichel Ferran, Belnap Jayne, Susanne Neuer FS (2003) Estimates of global cyanobacterial biomass and its distribution. Arch Hydrobiol Suppl Algol Stud 109:213–227
Harel Y, Ohad I, Kaplan A (2004) Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. Plant Physiol 136:3070–3079. https://doi.org/10.1104/pp.104.047712
Heber U (2008) Photoprotection of green plants: a mechanism of ultra-fast thermal energy dissipation in desiccated lichens. Planta 228:641–650. https://doi.org/10.1007/s00425-008-0766-5
Heber U, Bilger W, Shuvalov VA (2006a) Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation. J Exp Bot 57:2993–3006. https://doi.org/10.1093/jxb/erl058
Heber U, Lange OL, Shuvalov VA (2006b) Conservation and dissipation of light energy as complementary processes: homoiohydric and poikilohydric autotrophs. J Exp Bot 57:1211–1223. https://doi.org/10.1093/jxb/erj104
Heber U, Azarkovich M, Shuvalov V (2007) Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs. J Exp Bot 58:2745–2759. https://doi.org/10.1093/jxb/erm139
Heber U, Soni V, Strasser RJ (2011) Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens. Physiol Plant 142:65–78. https://doi.org/10.1111/j.1399-3054.2010.01417.x
Ivanov AG, Sane P, Hurry V, Król M, Sveshnikov D, Huner NPA, Öquist G (2003) Low-temperature modulation of the redox properties of the acceptor side of photosystem II: photoprotection through reaction centre quenching of excess energy. Physiol Plant 119:376–383. https://doi.org/10.1034/j.1399-3054.2003.00225.x
Ivanov AG, Sane PV, Hurry V, Öquist G, Huner NPA (2008) Photosystem II reaction centre quenching: mechanisms and physiological role. Photosynth Res 98:565. https://doi.org/10.1007/s11120-008-9365-3
Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta Bioenergy 1817:182–193. https://doi.org/10.1016/j.bbabio.2011.04.012
Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York
Miloslavina Y, Grouneva I, Lambrev PH, Lepetit B, Goss R, Wilhelm C, Holzwarth AR (2009) Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Biochim Biophys Acta Bioenergy 1787:1189–1197. https://doi.org/10.1016/j.bbabio.2009.05.012
Mullen KM, van Stokkum IHM (2007) TIMP: an R Package for modeling multi-way spectroscopic measurements. J Stat Softw 18:200–206. https://doi.org/10.1359/JBMR.0301229
Raanan H, Oren N, Treves H, Berkowicz SM, Hagemann M, Pade N, Keren N, Kaplan A (2016a) Simulated soil crust conditions in a chamber system provide new insights on cyanobacterial acclimation to desiccation. Environ Microbiol 18:414–426. https://doi.org/10.1111/1462-2920.12998
Raanan H, Oren N, Treves H, Keren N, Ohad I, Berkowicz SM, Hagemann M, Koch M, Shotland Y, Kaplan A (2016b) Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: the photosynthetic aspect. Biochim Biophys Acta Bioenergy 1857:715–722. https://doi.org/10.1016/j.bbabio.2016.02.007
Ranjbar Choubeh R, Wientjes E, Struik PC, Kirilovsky D, van Amerongen H (2018) State transitions in the cyanobacterium Synechococcus elongatus 7942 involve reversible quenching of the photosystem II core. Biochim Biophys Acta Bioenergy 1859:1059–1066. https://doi.org/10.1016/j.bbabio.2018.06.008
Sane PV, Ivanov AG, Sveshnikov D, Huner NPA, Öquist G (2002) A transient exchange of the photosystem II reaction center protein D1:1 with D1:2 during low temperature stress of Synechococcus sp. PCC 7942 in the Light lowers the redox potential of QB. J Biol Chem 277:32739–32745. https://doi.org/10.1074/jbc.M200444200
Slavov C, Reus M, Holzwarth AR (2013) Two different mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia Lichen. J Phys Chem B 117:11326–11336. https://doi.org/10.1021/jp402881f
Snellenburg JJ, Laptenok SP, Seger R, Mullen KM, van Stokkum IHM (2012) Glotaran: a Java-based graphical user interface for the R package TIMP. J Stat Softw. https://doi.org/10.18637/jss.v049.i03
Tian L, Van Stokkum IHM, Koehorst RBM, Jongerius A, Kirilovsky D, Van Amerongen H (2011) Site, rate, and mechanism of photoprotective quenching in cyanobacteria. J Am Chem Soc 133:18304–18311. https://doi.org/10.1021/ja206414m
Tian L, Gwizdala M, van Stokkum IHM, Koehorst RBM, Kirilovsky D, van Amerongen H (2012) Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys J 102:1692–1700. https://doi.org/10.1016/j.bpj.2012.03.008
Tian L, van Stokkum IHM, Koehorst RBM, van Amerongen H (2013) Light harvesting and blue-green light induced non-photochemical quenching in two different C-phycocyanin mutants of Synechocystis PCC 6803. J Phys Chem B 117:11000–11006. https://doi.org/10.1021/jp309570u
van Stokkum IHM, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta Bioenergy 1657:82–104. https://doi.org/10.1016/j.bbabio.2004.04.011
van Stokkum IHM, van Oort B, van Mourik F, Gobets B, van Amerongen H (2008) (Sub)-Picosecond spectral evolution of fluorescence studied with a synchroscan streak-camera system and target analysis. In: Aartsma TJ, Matysik J (eds) Biophysical techniques in photosynthesis. Springer, Dordrecht, pp 223–240