Photorespiratory Metabolism: Genes, Mutants, Energetics, and Redox Signaling

Annual Review of Plant Biology - Tập 60 Số 1 - Trang 455-484 - 2009
Christine H. Foyer1, Arnold J. Bloom2, Guillaume Queval3, Graham Noctor3
1School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
2Department of Plant Sciences, University of California, Davis, California 95616
3Institut de Biotechnologie des Plantes, UMR-CNRS 8618, Université de Paris sud XI, 91405 Orsay CEDEX, France;,

Tóm tắt

Photorespiration is a high-flux pathway that operates alongside carbon assimilation in C3 plants. Because most higher plant species photosynthesize using only the C3 pathway, photorespiration has a major impact on cellular metabolism, particularly under high light, high temperatures, and CO2 or water deficits. Although the functions of photorespiration remain controversial, it is widely accepted that this pathway influences a wide range of processes from bioenergetics, photosystem II function, and carbon metabolism to nitrogen assimilation and respiration. Crucially, the photorespiratory pathway is a major source of H2O2 in photosynthetic cells. Through H2O2 production and pyridine nucleotide interactions, photorespiration makes a key contribution to cellular redox homeostasis. In so doing, it influences multiple signaling pathways, particularly those that govern plant hormonal responses controlling growth, environmental and defense responses, and programmed cell death. The potential influence of photorespiration on cell physiology and fate is thus complex and wide ranging. The genes, pathways, and signaling functions of photorespiration are considered here in the context of whole plant biology, with reference to future challenges and human interventions to diminish photorespiratory flux.

Từ khóa


Tài liệu tham khảo

10.1111/j.1469-8137.2004.01224.x

10.1093/jxb/ern091

10.1007/s004250050461

10.1093/jxb/50.334.665

10.1146/annurev.pp.36.060185.000331

10.1093/jxb/erh079

10.1105/tpc.105.039982

10.1029/2005GB002534

10.1007/s00425-006-0222-3

10.1029/2004GB002410

10.1007/BF00402983

10.1105/tpc.105.035261

10.1073/pnas.022627299

10.1105/tpc.105.033993

10.1093/jexbot/53.372.1367

10.1146/annurev.pp.44.060193.001521

10.1074/jbc.M305717200

10.1111/j.1365-313X.2006.02806.x

10.1111/j.1399-3054.1990.tb04396.x

10.1073/pnas.95.10.5818

10.1046/j.1469-8137.2001.00112.x

10.1046/j.1365-3040.2003.01075.x

10.1111/j.1365-3040.2004.01257.x

10.1104/pp.108.122622

10.1007/s004420050381

10.1073/pnas.0608139103

27. Darwin C. 1990. The Correspondence of Charles Darwin, Vol. 6, 1856–1857, ed. F Burkhardt, S Smith. UK: Cambridge Univ. Press

10.1046/j.1365-313X.2003.01655.x

10.1104/pp.105.068254

10.1111/j.1365-2486.2006.01240.x

10.1093/jxb/46.special_issue.1363

10.1093/jxb/erj030

10.1104/pp.011155

10.1104/pp.105.066399

10.1007/s004420050311

10.1104/pp.106.082982

10.1104/pp.107.099317

10.1104/pp.108.126789

10.1023/A:1004715208478

10.1016/S0168-9452(02)00058-4

10.1093/treephys/22.9.633

10.1073/pnas.0706518104

10.1111/j.1365-3040.2005.01327.x

10.1016/j.tplants.2007.08.008

Foyer CH, 2009, Antioxid. Red. Signal., 11, 181

10.1093/jxb/erg053

10.1104/pp.112.1.327

10.1016/j.pbi.2006.05.014

10.1007/BF00202654

10.1105/tpc.10.6.889

10.1046/j.1365-313X.2002.01338.x

10.1071/PP96077

10.1071/PP01056

10.1104/pp.100.2.552

10.1073/pnas.93.8.3319

10.1038/35047071

10.1104/pp.108.119503

10.1104/pp.103.4.1147

10.1146/annurev.arplant.52.1.119

10.1104/pp.95.4.1131

10.1098/rstb.2006.1838

10.1155/2008/420747

10.1016/S0005-2728(03)00106-3

10.1034/j.1399-3054.2001.1110402.x

10.1046/j.1365-313X.2003.01688.x

10.1017/CBO9780511546013

10.1126/science.273.5283.1853

10.1007/s004250050682

10.1105/tpc.9.4.627

10.1016/S1369-5266(03)00061-X

10.1038/nbt1299

10.1007/BF00409139

Keys AJ, 1999, Plant Carbohydrate Biochemistry, 147

10.1111/j.1365-313X.2007.03052.x

10.1104/pp.016519

10.1104/pp.008532

10.1038/35075660

10.1093/jexbot/53.367.183

10.1104/pp.105.073957

10.1093/jxb/46.special_issue.1397

10.1046/j.1365-313x.2001.00961.x

10.1146/annurev.arplant.55.031903.141610

10.1093/oxfordjournals.pcp.a029493

10.1007/s004250050660

10.1016/j.pbi.2006.11.004

10.1104/pp.104.043646

10.1146/annurev.arplant.52.1.297

10.1016/j.cell.2006.06.054

10.1007/s11120-004-3548-3

10.1093/aob/mcm313

10.1016/j.tplants.2005.09.001

10.1046/j.1469-8137.2003.00804.x

10.1093/jxb/erm131

10.1146/annurev.arplant.49.1.249

10.1093/jexbot/49.329.1895

10.1093/jexbot/50.336.1157

10.1093/aob/mcf096

10.1093/jxb/erh021

10.1046/j.1365-3040.2002.00866.x

10.1146/annurev.pp.35.060184.002215

10.1093/jxb/46.special_issue.1351

10.1111/j.1365-3040.2007.01725.x

10.1146/annurev.arplant.53.100301.135242

10.1093/jxb/erl083

105. Queval G. 2008. Caractérisation de mutants photorespiratoires d'Arabidopsis déficients en catalase: mise en évidence des interactions entre photopériode et signalisation oxydative. PhD thesis. Université de Paris sud, Orsay, France, 130 pp.

10.1111/j.1365-313X.2007.03263.x

10.1073/pnas.0404388101

10.1046/j.1365-313X.2003.01806.x

10.1016/j.bbamcr.2006.09.008

Ritchie RJ, 2006, New Phytol., 171, 643, 10.1111/j.1469-8137.2006.01768.x

10.1046/j.1365-313X.2002.01427.x

10.1007/BF00014591

10.1055/s-2001-15206

10.1023/A:1025882003661

10.1093/jxb/eri181

10.1007/s00425-005-0125-8

10.1111/j.1365-313X.2005.02594.x

10.1104/pp.107.099192

10.1016/j.tplants.2007.08.010

10.1046/j.1365-313X.2002.01359.x

10.1007/s00425-008-0807-0

10.1093/jxb/ern123

10.1093/jxb/ern029

10.1074/jbc.M100356200

10.1016/0304-4211(84)90198-6

Soares AS, 2007, New Phytol., 177, 186, 10.1111/j.1469-8137.2007.02218.x

10.1146/annurev.pp.37.060186.002343

10.1104/pp.125.1.20

10.1146/annurev.arplant.53.100301.135233

10.1111/j.1399-3054.2005.00442.x

10.1046/j.1365-3040.1999.00386.x

10.1093/jexbot/53.370.959

10.1105/tpc.106.041673

10.1105/tpc.104.022046

10.1104/pp.107.097253

10.1046/j.1365-313X.1997.11050993.x

10.1105/tpc.016352

10.1093/pcp/pcf109

10.1073/pnas.0600605103

10.1073/pnas.0708947105

10.1105/tpc.108.062265

10.1146/annurev.arplant.48.1.1

10.1046/j.1432-1033.2003.03469.x

10.1111/j.1365-313X.2004.02105.x

10.1104/pp.105.065896

10.1007/s11103-007-9145-z

10.1111/j.1365-3040.1989.tb01630.x

10.1104/pp.105.071399

Von Caemmerer S, 2001, Aust. J. Plant Physiol., 28, 439

10.1046/j.1365-2486.1999.00265.x

Wand SJE, 2001, Aust. J. Plant Physiol., 28, 13

10.1046/j.1365-2486.1999.00270.x

10.1104/pp.123.3.1143

10.1093/emboj/16.16.4806

10.1098/rstb.2000.0712

10.1093/pcp/pcd074

156. Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP. 2008. High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol. doi:10.1104/pp.108.128439

10.1371/journal.pone.0002410

10.1111/j.1365-3040.2005.01459.x

10.1071/PP98136