Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects

Materials Horizons - Tập 5 Số 1 - Trang 9-27
Xingzhu Chen1,2,3,4, Neng Li1,5,6,2,3, Zhongxin Kong1,2,3,4, Wee‐Jun Ong7,8,9,10,11, Xiujian Zhao1,2,3,4
1China
2Hubei
3State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei, China
4Wuhan University of Technology
5Department of Materials Science & Metallurgy
6Department of Materials Science & Metallurgy, University of Cambridge, Cambridge, UK
7Agency for Science
8Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A⁎STAR), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
9Singapore
10Singapore 138634
11Technology and Research (A*STAR)

Tóm tắt

The state-of-the-art developments in the photocatalytic reduction of N2 to NH3 are presented by classifying the photocatalysts based on chemical composition. Additionally, the correlation between the modification of catalysts and their photocatalytic activity is highlighted.

Từ khóa


Tài liệu tham khảo

Rosca, 2009, Chem. Rev., 109, 2209, 10.1021/cr8003696

Canfield, 2010, Science, 330, 192, 10.1126/science.1186120

Burgess, 1996, Chem. Rev., 96, 2983, 10.1021/cr950055x

Jia, 2014, Chem. Soc. Rev., 43, 547, 10.1039/C3CS60206K

Shilov, 2003, Russ. Chem. Bull., 52, 2555, 10.1023/B:RUCB.0000019873.81002.60

Smil, 1999, Nature, 400, 415, 10.1038/22672

Hoffman, 2014, Chem. Rev., 114, 4041, 10.1021/cr400641x

C. N. Satterfield , Heterogeneous Catalysis in Practice , McGraw-Hill Companies , 1980

Schlögl, 2003, Angew. Chem., Int. Ed., 42, 2004, 10.1002/anie.200301553

Liu, 2014, Chin. J. Catal., 35, 1619, 10.1016/S1872-2067(14)60118-2

Temkin, 1940, Acta Physiochim. U. R. S. S., 12, 217

Liang, 2001, Appl. Catal., A, 208, 193, 10.1016/S0926-860X(00)00713-4

Vojvodic, 2014, Chem. Phys. Lett., 598, 108, 10.1016/j.cplett.2014.03.003

Inoue, 2016, ACS Catal., 6, 7577, 10.1021/acscatal.6b01940

Allen, 1965, Chem. Commun., 621

Yandulov, 2003, Science, 301, 76, 10.1126/science.1085326

Schwarz, 2009, Nature, 460, 839, 10.1038/nature08302

Arashiba, 2011, Nat. Chem., 3, 120, 10.1038/nchem.906

Anderson, 2013, Nature, 501, 84, 10.1038/nature12435

Creutz, 2014, J. Am. Chem. Soc., 136, 1105, 10.1021/ja4114962

Rittle, 2016, J. Am. Chem. Soc., 138, 4243, 10.1021/jacs.6b01230

Shima, 2013, Science, 340, 1549, 10.1126/science.1238663

Hoffman, 2009, Acc. Chem. Res., 42, 609, 10.1021/ar8002128

Bjornsson, 2015, J. Biol. Inorg. Chem., 20, 447, 10.1007/s00775-014-1230-6

MacLeod, 2013, Nat. Chem., 5, 559, 10.1038/nchem.1620

Kyriakou, 2017, Catal. Today, 286, 2, 10.1016/j.cattod.2016.06.014

Marnellos, 1998, Science, 282, 98, 10.1126/science.282.5386.98

Li, 2005, Solid State Ionics, 176, 1063, 10.1016/j.ssi.2005.01.009

Vasileiou, 2015, Top. Catal., 58, 1193, 10.1007/s11244-015-0491-9

Vasileiou, 2015, Solid State Ionics, 275, 110, 10.1016/j.ssi.2015.01.002

Kobayashi, 2017, ECS Trans., 75, 43, 10.1149/07542.0043ecst

Kordali, 2000, Chem. Commun., 1673, 10.1039/b004885m

Xu, 2009, Sci. China, Ser. B: Chem., 52, 1171, 10.1007/s11426-009-0135-7

Lan, 2013, RSC Adv., 3, 18016, 10.1039/c3ra43432j

Murakami, 2003, J. Am. Chem. Soc., 125, 334, 10.1021/ja028891t

Murakami, 2007, Electrochem. Solid-State Lett., 10, E4, 10.1149/1.2437674

Amar, 2015, RSC Adv., 5, 38977, 10.1039/C5RA00600G

Licht, 2014, Science, 345, 637, 10.1126/science.1254234

Li, 2014, Inorg. Chem., 53, 10042, 10.1021/ic5020048

Chen, 2017, Angew. Chem., Int. Ed., 56, 2699, 10.1002/anie.201609533

Djurisic, 2014, Mater. Horiz., 1, 400, 10.1039/c4mh00031e

Marszewski, 2015, Mater. Horiz., 2, 261, 10.1039/C4MH00176A

Ma, 2014, Chem. Rev., 114, 9987, 10.1021/cr500008u

J. L. White , M. F.Baruch , J. E.Pander Iii , Y.Hu , I. C.Fortmeyer , J. E.Park , T.Zhang , K.Liao , J.Gu , Y.Yan , T. W.Shaw , E.Abelev and A. B.Bocarsly , Chem. Rev. , 2015 , 115 , 12888–12935

Wenderich, 2016, Chem. Rev., 116, 14587, 10.1021/acs.chemrev.6b00327

Zhao, 2016, Adv. Energy Mater., 6, 1501974, 10.1002/aenm.201501974

Liu, 2017, Energy Environ. Sci., 10, 402, 10.1039/C6EE02265K

Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Putri, 2017, ACS Appl. Mater. Interfaces, 9, 4558, 10.1021/acsami.6b12060

Ong, 2014, Nanoscale, 6, 1946, 10.1039/c3nr04655a

Di, 2017, Nano Energy, 35, 79, 10.1016/j.nanoen.2017.03.030

Yang, 2013, Acc. Chem. Res., 46, 1900, 10.1021/ar300227e

Chen, 2010, Chem. Rev., 110, 6503, 10.1021/cr1001645

Chen, 2017, Nat. Rev. Mater., 2, 17050, 10.1038/natrevmats.2017.50

Lu, 2016, Adv. Mater., 28, 1917, 10.1002/adma.201503270

Hutton, 2017, Chem. Soc. Rev., 10.1039/c7cs00235a

Zhang, 2017, Chem. Sci., 8, 5261, 10.1039/C7SC01747B

Chang, 2016, Energy Environ. Sci., 9, 2177, 10.1039/C6EE00383D

Moniz, 2015, Energy Environ. Sci., 8, 731, 10.1039/C4EE03271C

Meng, 2016, Adv. Mater., 28, 6781, 10.1002/adma.201600305

Li, 2017, Acc. Chem. Res., 50, 112, 10.1021/acs.accounts.6b00523

Dong, 2015, J. Mater. Chem. A, 3, 23435, 10.1039/C5TA06540B

Dhar, 1968, Proc. Natl. Acad. Sci., India, 38, 485

Schrauzer, 1983, Proc. Natl. Acad. Sci. U. S. A., 80, 3873, 10.1073/pnas.80.12.3873

Medford, 2017, ACS Catal., 7, 2624, 10.1021/acscatal.7b00439

G. N. Schrauzer , Energy Efficiency and Renewable Energy Through Nanotechnology , Springer , 2011 , pp. 601–623

Schrauzer, 1977, J. Am. Chem. Soc., 99, 7189, 10.1021/ja00464a015

Bazhenova, 1995, Coord. Chem. Rev., 144, 69, 10.1016/0010-8545(95)01139-G

van der Ham, 2014, Chem. Soc. Rev., 43, 5183, 10.1039/C4CS00085D

Guo, 2016, Chem. Rec., 16, 1918, 10.1002/tcr.201600008

Sun, 2017, Appl. Catal., B, 200, 323, 10.1016/j.apcatb.2016.07.025

Ong, 2014, ChemSusChem, 7, 690, 10.1002/cssc.201300924

Ong, 2016, Chem. Rev., 116, 7159, 10.1021/acs.chemrev.6b00075

Putri, 2016, Appl. Mater. Today, 4, 9, 10.1016/j.apmt.2016.04.001

Fuertes, 2015, Mater. Horiz., 2, 453, 10.1039/C5MH00046G

Kessler, 2017, Nat. Rev. Mater., 2, 17030, 10.1038/natrevmats.2017.30

Sivula, 2016, Nat. Rev. Mater., 1, 16010, 10.1038/natrevmats.2016.10

Roger, 2017, Nat. Rev. Chem., 1, 0003, 10.1038/s41570-016-0003

Tachibana, 2012, Nat. Photonics, 6, 511, 10.1038/nphoton.2012.175

Low, 2017, Adv. Mater., 29, 1601694, 10.1002/adma.201601694

Cao, 2015, Adv. Mater., 27, 2150, 10.1002/adma.201500033

Li, 2015, Adv. Funct. Mater., 25, 998, 10.1002/adfm.201401636

Putri, 2015, Appl. Surf. Sci., 358, 2, 10.1016/j.apsusc.2015.08.177

Hoang, 2016, Adv. Energy Mater., 6, 1600683, 10.1002/aenm.201600683

Li, 2016, Chem. Soc. Rev., 45, 2603, 10.1039/C5CS00838G

Li, 2017, Angew. Chem., 10.1002/ange.201705628

Azofra, 2016, Energy Environ. Sci., 9, 2545, 10.1039/C6EE01800A

Li, 2016, Nanoscale, 8, 1986, 10.1039/C5NR07380D

Bai, 2016, ACS Appl. Mater. Interfaces, 8, 27661, 10.1021/acsami.6b08129

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Bourgeois, 1988, React. Solids, 6, 95, 10.1016/0168-7336(88)80048-2

Hirakawa, 2017, J. Am. Chem. Soc., 139, 10929, 10.1021/jacs.7b06634

Augugliaro, 1982, Int. J. Hydrogen Energy, 7, 845, 10.1016/0360-3199(82)90001-5

Iida, 1961, J. Am. Ceram. Soc., 44, 120, 10.1111/j.1151-2916.1961.tb13725.x

Navio, 1992, J. Mater. Sci., 27, 3036, 10.1007/BF01154116

Radford, 1983, J. Chem. Soc., Chem. Commun., 1520, 10.1039/c39830001520

Rao, 1980, J. Phys. Chem., 84, 1987, 10.1021/j100452a023

Soria, 1991, J. Phys. Chem., 95, 274, 10.1021/j100154a052

Zhao, 2014, Appl. Catal., B, 144, 468, 10.1016/j.apcatb.2013.07.047

Palmisano, 1988, J. Phys. Chem., 92, 6710, 10.1021/j100334a044

Martin, 1992, J. Catal., 134, 434, 10.1016/0021-9517(92)90333-D

Ileperuma, 1990, Appl. Catal., 62, L1, 10.1016/S0166-9834(00)82226-5

Ileperuma, 1993, Sol. Energy Mater. Sol. Cells, 28, 335, 10.1016/0927-0248(93)90121-I

Miyama, 1980, Chem. Phys. Lett., 74, 523, 10.1016/0009-2614(80)85266-3

Taqui Khan, 1992, J. Photochem. Photobiol., A, 67, 349, 10.1016/1010-6030(92)87009-X

Ranjit, 1996, J. Photochem. Photobiol., A, 96, 181, 10.1016/1010-6030(95)04290-3

Linnik, 2008, Mendeleev Commun., 18, 10, 10.1016/j.mencom.2008.01.004

Hoshino, 2000, Angew. Chem., Int. Ed., 39, 2509, 10.1002/1521-3773(20000717)39:14<2509::AID-ANIE2509>3.0.CO;2-I

Hoshino, 2001, Chem. – Eur. J., 7, 2727, 10.1002/1521-3765(20010702)7:13<2727::AID-CHEM2727>3.0.CO;2-4

Hoshino, 2008, Appl. Catal., B, 79, 81, 10.1016/j.apcatb.2007.10.007

Khader, 1987, Langmuir, 3, 303, 10.1021/la00074a028

Jacobsen, 2001, J. Am. Chem. Soc., 123, 8404, 10.1021/ja010963d

Lashgari, 2017, Appl. Catal., A, 529, 91, 10.1016/j.apcata.2016.10.017

Endoh, 1986, J. Phys. Chem., 90, 6223, 10.1021/j100281a031

Zhao, 2015, Chem. Commun., 51, 4785, 10.1039/C5CC00589B

Sun, 2017, J. Mater. Chem. A, 5, 201, 10.1039/C6TA09275F

Augugliaro, 1982, Int. J. Hydrogen Energy, 7, 851, 10.1016/0360-3199(82)90002-7

Janet, 2010, J. Phys. Chem. C, 114, 2622, 10.1021/jp908683x

Pan, 2014, Phys. Chem. Chem. Phys., 16, 25442, 10.1039/C4CP03209H

Cordischi, 1985, J. Solid State Chem., 56, 182, 10.1016/0022-4596(85)90055-6

Rusina, 2001, Angew. Chem., Int. Ed., 40, 3993, 10.1002/1521-3773(20011105)40:21<3993::AID-ANIE3993>3.0.CO;2-6

Rusina, 2003, Chem. – Eur. J., 9, 561, 10.1002/chem.200390059

Linnik, 2006, Photochem. Photobiol. Sci., 5, 938, 10.1039/b608396j

G. N. Schrauzer , T. D.Guth , J.Salehi , N.Strampach , N. H.Liu and M. R.Palmer , in Homogeneous and Heterogeneous Photocatalysis , ed. E. Pelizzetti and N. Serpone , Reidel , Hingham, MA , 1986 , vol. 174, pp. 509–518

Li, 1983, Chem. Lett., 321, 10.1246/cl.1983.321

Linic, 2011, Nat. Mater., 10, 911, 10.1038/nmat3151

Oshikiri, 2014, Angew. Chem., Int. Ed., 53, 9802, 10.1002/anie.201404748

Oshikiri, 2016, Angew. Chem., 128, 4010, 10.1002/ange.201511189

Skulason, 2012, Phys. Chem. Chem. Phys., 14, 1235, 10.1039/C1CP22271F

Shipman, 2017, Catal. Today, 286, 57, 10.1016/j.cattod.2016.05.008

Hao, 2016, Chem. – Eur. J., 22, 18722, 10.1002/chem.201604510

Tennakone, 1987, J. Chem. Soc., Chem. Commun., 1078, 10.1039/c39870001078

Tennakone, 1991, Langmuir, 7, 2166, 10.1021/la00058a032

Tennakone, 1989, Sol. Energy Mater., 18, 217, 10.1016/0165-1633(89)90055-5

Tennakone, 1993, Langmuir, 9, 723, 10.1021/la00027a019

Li, 2016, Chem. – Eur. J., 22, 13819, 10.1002/chem.201603277

Ileperuma, 1991, J. Photochem. Photobiol., A, 59, 191, 10.1016/1010-6030(91)87007-I

Tennakone, 1988, Sol. Energy Mater., 17, 47, 10.1016/0165-1633(88)90036-6

Tennakone, 1992, J. Photochem. Photobiol., A, 68, 131, 10.1016/1010-6030(92)85176-U

Ong, 2017, Nano Res., 10, 1673, 10.1007/s12274-016-1391-4

Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825

Yan, 2009, J. Catal., 266, 165, 10.1016/j.jcat.2009.06.024

Navalón, 2013, ChemSusChem, 6, 562, 10.1002/cssc.201200670

Khan, 1988, Angew. Chem., Int. Ed., 27, 923, 10.1002/anie.198809231

Khan, 1990, J. Mol. Catal. A: Chem., 58, 323, 10.1016/0304-5102(90)85021-9

Ye, 2017, Chem. Eng. J., 307, 311, 10.1016/j.cej.2016.08.102

Brown, 2016, Science, 352, 448, 10.1126/science.aaf2091

Banerjee, 2015, J. Am. Chem. Soc., 137, 2030, 10.1021/ja512491v

Liu, 2016, Proc. Natl. Acad. Sci. U. S. A., 113, 5530, 10.1073/pnas.1605512113

Hoffman, 2009, Acc. Chem. Res., 42, 609, 10.1021/ar8002128

Li, 2015, J. Am. Chem. Soc., 137, 6393, 10.1021/jacs.5b03105

Hu, 2016, Catal. Sci. Technol., 6, 5884, 10.1039/C6CY00622A

Cao, 2016, RSC Adv., 6, 49862, 10.1039/C6RA08247E

Hu, 2016, ACS Sustainable Chem. Eng., 4, 2269, 10.1021/acssuschemeng.5b01742

Zhang, 2016, Dalton Trans., 45, 3497, 10.1039/C5DT04901F

Wu, 2013, Nat. Phys., 9, 149, 10.1038/nphys2524

Mak, 2012, Nat. Nanotechnol., 7, 494, 10.1038/nnano.2012.96

Pogna, 2016, ACS Nano, 10, 1182, 10.1021/acsnano.5b06488

Sun, 2017, Appl. Catal., B, 200, 323, 10.1016/j.apcatb.2016.07.025

Lui, 2014, Phys. Rev. Lett., 113, 166801, 10.1103/PhysRevLett.113.166801

Cheng, 2014, Nanoscale, 6, 2009, 10.1039/c3nr05529a

Huang, 2009, J. Comput. Chem., 30, 183, 10.1002/jcc.21055

Kong, 2016, ChemCatChem, 8, 3074, 10.1002/cctc.201600782

Wang, 2017, Adv. Mater., 29, 1701774, 10.1002/adma.201701774

Zhu, 2013, Nat. Mater., 12, 836, 10.1038/nmat3696

Christianson, 2014, J. Phys. Chem. B, 118, 195, 10.1021/jp406535p

Bandy, 2016, Diamond Relat. Mater., 64, 34, 10.1016/j.diamond.2016.01.006

Ma, 2016, Appl. Surf. Sci., 379, 309, 10.1016/j.apsusc.2016.04.085

Li, 2016, RSC Adv., 6, 45931, 10.1039/C6RA08817A

Ma, 2016, J. Phys. Chem. Solids, 99, 51, 10.1016/j.jpcs.2016.08.008

Wu, 2016, Ceram. Int., 42, 6985, 10.1016/j.ceramint.2016.01.086

Hu, 2017, Appl. Catal., B, 201, 58, 10.1016/j.apcatb.2016.08.002

Ma, 2016, Catal. Lett., 146, 2324, 10.1007/s10562-016-1862-y

Wang, 2017, RSC Adv., 7, 18099, 10.1039/C7RA00097A

Liang, 2017, New J. Chem., 41, 8920, 10.1039/C7NJ01848G

Cao, 2017, Appl. Catal., B, 218, 600, 10.1016/j.apcatb.2017.07.013

Hu, 2016, RSC Adv., 6, 25695, 10.1039/C5RA28123G

Hu, 2015, Dalton Trans., 44, 1084, 10.1039/C4DT02658F

Han, 2017, Mater. Horiz., 4, 832, 10.1039/C7MH00379J

Ong, 2015, Chem. Commun., 51, 858, 10.1039/C4CC08996K

Ong, 2015, Nano Energy, 13, 757, 10.1016/j.nanoen.2015.03.014

Ong, 2017, Front. Mater., 4, 11, 10.3389/fmats.2017.00011

Lu, 2016, ACS Nano, 10, 10507, 10.1021/acsnano.6b06472

Yang, 2017, Carbon, 124, 72, 10.1016/j.carbon.2017.07.014

Dean, 1967, Phys. Rev., 157, 655, 10.1103/PhysRev.157.655

Aurian-Blajeni, 1983, Sol. Energy Mater., 8, 425, 10.1016/0165-1633(83)90007-2

Dickson, 1978, J. Am. Chem. Soc., 100, 8007, 10.1021/ja00493a039

Khan, 1981, J. Chem. Soc., Chem. Commun., 20, 1049, 10.1039/c39810001049

Khan, 1983, Ind. Eng. Chem. Res., 22, 238, 10.1021/i300010a014

Zeng, 2015, Catal. Commun., 59, 40, 10.1016/j.catcom.2014.09.034

Ali, 2016, Nat. Commun., 7, 11335, 10.1038/ncomms11335

Li, 2017, Angew. Chem., 129, 8827, 10.1002/ange.201703301

Klerke, 2008, J. Mater. Chem., 18, 2304, 10.1039/b720020j

Lan, 2012, Int. J. Hydrogen Energy, 37, 1482, 10.1016/j.ijhydene.2011.10.004

Ong, 2016, Appl. Catal., B, 180, 530, 10.1016/j.apcatb.2015.06.053

Zeng, 2017, J. Mater. Chem. A, 5, 16171, 10.1039/C7TA04816E

Putri, 2016, Catal. Sci. Technol., 6, 744, 10.1039/C5CY00767D

Zeng, 2017, ChemSusChem, 10.1002/cssc.201701345

Ong, 2015, Dalton Trans., 44, 1249, 10.1039/C4DT02940B

Zeng, 2017, Appl. Catal., B, 10.1016/j.apcatb.2017.08.041

Ong, 2014, Nano Res., 7, 1528, 10.1007/s12274-014-0514-z

Guo, 2016, Chem. Rec., 16, 1918, 10.1002/tcr.201600008

Qiu, 2017, Appl. Catal., B, 10.1016/j.apcatb.2017.09.010