Phân hủy quang xúc tác phẩm nhuộm và nước thải dệt may

Water, Air, and Soil Pollution - Tập 216 - Trang 117-124 - 2010
Dilek Gümüş1, Feryal Akbal1
1Engineering Faculty, Department of Environmental Engineering, Ondokuz Mayıs University, Samsun, Turkey

Tóm tắt

Trong nghiên cứu này, quá trình phân hủy quang xúc tác của phẩm nhuộm azo thương mại (Remazol Red 133) trong sự có mặt của các lơ lửng oxit titani (TiO2) được sử dụng làm xúc tác đã được điều tra. Ảnh hưởng của nhiều thông số hoạt động, như độ pH của dung dịch phẩm nhuộm và nồng độ xúc tác lên quá trình phân hủy quang xúc tác đã được xem xét. Sự khoáng hóa của phẩm nhuộm cũng được đánh giá bằng cách đo nhu cầu oxy hóa học của các dung dịch phẩm nhuộm. Mức độ phân hủy quang xúc tác được phát hiện là tăng lên khi nồng độ TiO2 tăng. Đối với các dung dịch phẩm nhuộm Remazol Red, việc điều trị trong 120 phút đã dẫn đến 97,9% tẩy màu và 87,6% phân hủy ở nồng độ xúc tác 3 g/L. Các thí nghiệm sử dụng nước thải dệt may thực tế cũng đã được thực hiện. Việc phân hủy nước thải dệt may được cải thiện ở điều kiện axit. Hiệu suất tẩy màu và phân hủy đối với nước thải dệt may lần lượt là 97,8% và 84,9% ở pH 3,0, nồng độ xúc tác 3 g/L, và thời gian điều trị 120 phút.

Từ khóa

#phân hủy quang xúc tác #phẩm nhuộm azo #TiO2 #nước thải dệt may #khoáng hóa #nhu cầu oxy hóa học

Tài liệu tham khảo

Abu Tariq, M., Faisal, M., Saquib, M., & Muneer, M. (2008). Heterogeneous photocatalytic degradation of an anthraquinone and a triphenylmethane dye derivative in aqueous suspensions of semiconductor. Dyes and Pigments, 76, 358–365. Akbal, F. (2005). Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: Effect of operational parameters. Environmental Progress, 24, 317–322. Akpan, U. G., & Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials, 170, 520–529. Aleboyeh, A., Olya, M. E., & Aleboyeh, H. (2008). Electrical energy determination for an azo dye decolorization and mineralization by UV/H2O2 advanced oxidation process. Chemical Engineering Journal, 137, 518–524. APHA, AWWA, WPCF (1995). Standard methods for examination of water and wastewater, 19th ed. Washington: American Public Health Association, American Water Works Association, Water Environment Federation. Baran, W., Adamek, E., & Makowski, A. (2008). The influence of selected parameters on the photocatalytic degradation of azo-dyes in the presence of TiO2 aqueous suspension. Chemical Engineering Journal, 145, 242–248. Bizani, E., Fytianos, K., Poulios, I., & Tsiridis, V. (2006). Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. Journal of Hazardous Materials, 136, 85–94. Dizge, N., Aydiner, C., Demirbas, E., Kobya, M., & Kara, S. (2008). Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies. Journal of Hazardous Materials, 150, 737–746. Faisal, M., Abu Tariq, M., & Muneer, M. (2007). Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania. Dyes and Pigments, 72, 233–239. Ghaly, M. Y., Farah, J. Y., & Fathy, A. M. (2007). Enhancement of decolorization rate and COD removal from dyes containing wastewater by the addition of hydrogen peroxide under solar photocatalytic oxidation. Desalination, 217, 74–84. Guillard, C., Lachheb, H., Houas, A., Ksibi, M., Elaloui, E., & Herrmann, J.-M. (2003). Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 158, 27–36. Kansal, S. K., Singh, M., & Sud, D. (2007). Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. Journal of Hazardous Materials, 141, 581–590. Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. A review. Applied Catalysis B: Environmental, 49, 1–14. Mahmoodi, N. M., Arami, M., & Limaee, N. Y. (2006). Photocatalytic degradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor: Bench scale study. Journal of Hazardous Materials, B133, 113–118. Martins, A. F., Wilde, M. L., & Silveira, C. (2006). Photocatalytic degradation of brilliant red dye and textile wastewater. Journal of Environmental Science and Health Part A, 41, 675–685. Muruganandham, M., & Swaminathan, M. (2004). Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension. Solar Energy Materials & Solar Cells, 81, 439–457. Muruganandham, M., & Swaminathan, M. (2006). Photocatalytic decolourisation and degradation of reactive orange 4 by TiO2-UV process. Dyes and Pigments, 68, 133–142. Muruganandham, M., Shobana, N., & Swaminathan, M. (2006). Optimization of solar photocatalytic degradation conditions of reactive yellow 14 azo dye in aqueous TiO2. Journal of Molecular Catalysis A: Chemical, 246, 154–161. Neelavannan, M. G., Revathi, M., & Ahmed Basha, C. (2007). Photocatalytic and electrochemical combined treatment of textile wash water. Journal of Hazardous Materials, 149, 371–378. Neppolian, B., Choi, H. C., Sakthivel, S., Arabindoo, B., & Murugesan, V. (2002). Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere, 46, 1173–1181. Pekakis, P. A., Xekoukoulotakis, N. P., & Mantzavinos, D. (2006). Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Reseacrh, 40, 1276–1286. Qamar, M., Saquib, M., & Muneer, M. (2005). Titanium dioxide mediated photocatalytic degradation of two selected azo dye derivatives, chrysoidine R and acid red 29 (chromotrope 2R), in aqueous suspensions. Desalination, 186, 255–271. Rauf, M. A., & Salman Ashraf, S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 151, 10–18. Sahel, K., Perol, N., Chermette, H., Bordes, C., Derriche, Z., & Guillard, C. (2007). Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B-Isotherm of adsorption, kinetic of decolorization and mineralization. Applied Catalysis B: Environmental, 77, 100–109. Saien, J., & Soleymani, A. R. (2007). Degradation and mineralization of Direct Blue 71 in a circulating upflow reactor by UV/TiO2 process and employing a new method in kinetic study. Journal of Hazardous Materials, 144, 506–512. Secula, M. S., Suditu, G. D., Poulios, I., Cojocaru, C., & Cretescu, I. (2008). Response surface optimization of the photocatalytic decolorization of a simulated dyestuff effluent. Chemical Engineering Journal, 141, 18–26. Silva, C. G., & Faria, J. L. (2003). Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 155, 133–143. Sobana, N., & Swaminathan, M. (2007). The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Separation and Purification Technology, 56, 101–107. Sohrabi, M. R., & Ghavami, M. (2008). Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters. Journal of Hazardous Materials, 153, 1235–1239.