Phosphorylation of cardiac voltage‐gated sodium channel: Potential players with multiple dimensions

Acta Physiologica - Tập 225 Số 3 - 2019
Shahid Muhammad Iqbal1,2, Rosa Lemmens‐Gruber1
1Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
2Drugs Regulatory Authority of Pakistan Telecom Foundation (TF) Complex Islamabad Pakistan

Tóm tắt

Abstract

Cardiomyocytes are highly coordinated cells with multiple proteins organized in micro domains. Minor changes or interference in subcellular proteins can cause major disturbances in physiology. The cardiac sodium channel (NaV1.5) is an important determinant of correct electrical activity in cardiomyocytes which are localized at intercalated discs, T‐tubules and lateral membranes in the form of a macromolecular complex with multiple interacting protein partners. The channel is tightly regulated by post‐translational modifications for smooth conduction and propagation of action potentials. Among regulatory mechanisms, phosphorylation is an enzymatic and reversible process which modulates NaV1.5 channel function by attaching phosphate groups to serine, threonine or tyrosine residues. Phosphorylation of NaV1.5 is implicated in both normal physiological and pathological processes and is carried out by multiple kinases. In this review, we discuss and summarize recent literature about the (a) structure of NaV1.5 channel, (b) formation and subcellular localization of NaV1.5 channel macromolecular complex, (c) post‐translational phosphorylation and regulation of NaV1.5 channel, and (d) how these phosphorylation events of NaV1.5 channel alter the biophysical properties and affect the channel during disease status. We expect, by reviewing these aspects will greatly improve our understanding of NaV1.5 channel biology, physiology and pathology, which will also provide an insight into the mechanism of arrythmogenesis at molecular level.

Từ khóa


Tài liệu tham khảo

10.1006/geno.1996.0236

10.1523/JNEUROSCI.05-06-01570.1985

10.1152/ajpheart.00111.2008

10.1039/c004495d

10.3389/fphar.2011.00053

10.1016/bs.ctm.2016.05.001

10.1016/j.yjmcc.2010.04.004

10.1093/cvr/cvr252

10.1161/CIRCRESAHA.110.238469

10.1161/01.RES.0000096652.14509.96

10.1111/j.1469-7793.1998.647bp.x

10.1038/339597a0

10.1007/s002100000319

10.1038/356441a0

10.1113/expphysiol.2013.071969

10.1152/physrev.00024.2004

10.1080/19336950.2017.1369637

10.1085/jgp.200409123

10.1016/S0959-4388(03)00065-5

10.1016/S0896-6273(00)81133-2

10.1161/CIRCULATIONAHA.115.017980

10.1016/j.tcm.2015.05.006

10.1007/978-3-642-41588-3_7

10.3389/fphar.2014.00041

10.1113/jphysiol.2013.256461

Zaklyazminskaya E, 1863, The role of mutations in the SCN5A gene in cardiomyopathies, Biochim Biophys Acta, 1799, 2016

10.1038/nrcardio.2014.85

10.1161/CIRCRESAHA.114.305305

10.1042/BST20150059

10.1110/ps.062172506

10.1161/01.RES.0000229244.97497.2c

10.1038/s41467-017-02262-0

10.1074/jbc.M709721200

10.1073/pnas.0403711101

10.1161/CIRCRESAHA.115.305154

10.1172/JCI43621

10.1161/CIRCRESAHA.111.247023

10.1016/j.hrthm.2011.08.002

10.1016/j.bbamcr.2012.10.026

10.1021/bi901086v

10.1093/cvr/cvq326

10.1161/01.RES.0000237466.13252.5e

10.1113/jphysiol.2014.281428

10.1016/j.bbrc.2006.08.014

10.1038/415442a

10.1093/cvr/cvp324

10.1016/j.str.2018.03.005

10.1161/01.RES.0000136816.05109.89

10.1016/S0014-5793(00)01098-X

10.1126/scisignal.279pe41

10.1074/jbc.M115.695080

10.1074/jbc.M207074200

10.1161/CIRCRESAHA.111.247957

10.1093/cvr/cvs211

10.1093/cvr/cvw009

10.1111/febs.14496

10.1016/S0021-9258(19)34204-8

10.1016/j.gene.2015.11.052

10.1016/j.bbapap.2003.11.029

10.1021/bi00418a054

10.1021/cr000236l

Schubert B, 1990, Inhibition of cardiac Na+ currents by isoproterenol, Am J Physiol, 258, H977

10.1152/ajpcell.1989.256.6.C1131

10.1126/science.2547248

10.1016/S0022-2828(85)80065-1

10.1007/BF00370691

10.1161/01.RES.70.1.199

10.1007/BF00386171

10.1007/BF01871415

10.1007/BF02207277

10.1161/01.RES.72.4.807

10.1074/jbc.271.46.28837

10.1113/jphysiol.1997.sp021859

10.1161/01.RES.87.1.33

10.1111/j.1469-7793.1999.0371p.x

10.1111/j.1540-8167.2006.00382.x

10.1016/j.cardiores.2006.08.007

10.1161/01.RES.0000033598.00903.27

10.1007/164_2017_53

10.1016/j.cardiores.2004.06.021

10.1161/CIRCGENETICS.113.000480

10.1126/science.1079206

10.1152/ajpendo.00477.2009

10.1016/S0008-6363(00)00185-1

10.1074/jbc.270.48.28495

10.1161/01.RES.65.6.1804

10.1073/pnas.91.8.3289

10.1085/jgp.108.5.375

10.1161/01.RES.80.3.370

10.1161/01.RES.81.3.380

10.1152/ajpcell.2001.281.5.C1477

10.1016/S0014-5793(01)02380-8

10.1152/ajpheart.00817.2010

10.1016/j.hrthm.2016.02.015

10.1016/j.hrthm.2016.12.026

10.1161/CIRCRESAHA.109.197277

10.1016/S0021-9258(19)84658-6

10.1007/BF00788498

10.1042/bj20020228

10.1016/j.cell.2008.02.048

10.1016/S0008-6363(98)00296-X

10.1161/01.RES.84.6.713

10.1172/JCI200316326

10.1038/nm1215

10.1161/01.RES.0000012502.92751.E6

10.1172/JCI26620

10.1152/ajpheart.00484.2007

10.1016/j.yjmcc.2009.06.020

10.1152/physiol.00043.2007

10.1152/ajpheart.00306.2013

10.1152/ajpcell.00125.2011

10.1074/jbc.M111.322537

10.1021/pr300702c

10.1074/jbc.M117.787788

10.1021/acs.jproteome.5b00107

10.1007/s00726-014-1890-0

10.1021/pr200339n

10.1161/CIRCULATIONAHA.114.015218

10.1089/109065703321560958

10.1016/j.ahj.2006.08.020

10.1001/jama.294.23.2975

10.1161/CIRCULATIONAHA.112.105320

10.1007/s00424-003-1061-8

10.1016/S1357-2725(98)00089-2

10.1016/j.febslet.2012.04.042

10.1016/0092-8674(94)90367-0

10.1016/j.biocel.2008.12.016

10.1124/pr.54.3.431

10.1161/hh0402.105177

10.1159/000430211

10.1161/01.RES.0000166324.00524.dd

10.1161/CIRCRESAHA.116.303975

10.1126/scitranslmed.3003623

10.1124/jpet.117.246157

10.2337/db13-0420

10.1371/journal.pone.0122436

10.1093/emboj/18.11.3024

10.1016/S0008-6363(02)00837-4

10.1161/CIRCULATIONAHA.112.115592

10.1038/s41598-017-00413-3

10.1126/scisignal.2003506