Phosphorylation Meets Ubiquitination: The Control of NF-κB Activity

Annual Review of Immunology - Tập 18 Số 1 - Trang 621-663 - 2000
Michael Karin1,2, Yinon Ben‐Neriah1,2
1Department of Pharmacology, Laboratory of Gene Regulation and Signal Transduction University of California, San Diego, La Jolla, California, 92093-0636;
2Lautenberg Center for Immunology, Hadassah Medical School, Hebrew University Jerusalem, Israel, 91120;

Tóm tắt

NF-κB (nuclear factor-κB) is a collective name for inducible dimeric transcription factors composed of members of the Rel family of DNA-binding proteins that recognize a common sequence motif. NF-κB is found in essentially all cell types and is involved in activation of an exceptionally large number of genes in response to infections, inflammation, and other stressful situations requiring rapid reprogramming of gene expression. NF-κB is normally sequestered in the cytoplasm of nonstimulated cells and consequently must be translocated into the nucleus to function. The subcellular location of NF-κB is controlled by a family of inhibitory proteins, IκBs, which bind NF-κB and mask its nuclear localization signal, thereby preventing nuclear uptake. Exposure of cells to a variety of extracellular stimuli leads to the rapid phosphorylation, ubiquitination, and ultimately proteolytic degradation of IκB, which frees NF-κB to translocate to the nucleus where it regulates gene transcription. NF-κB activation represents a paradigm for controlling the function of a regulatory protein via ubiquitination-dependent proteolysis, as an integral part of a phosphorylationbased signaling cascade. Recently, considerable progress has been made in understanding the details of the signaling pathways that regulate NF-κB activity, particularly those responding to the proinflammatory cytokines tumor necrosis factor-α and interleukin-1. The multisubunit IκB kinase (IKK) responsible for inducible IκB phosphorylation is the point of convergence for most NF-κB–activating stimuli. IKK contains two catalytic subunits, IKKα and IKKβ, both of which are able to correctly phosphorylate IκB. Gene knockout studies have shed light on the very different physiological functions of IKKα and IKKβ. After phosphorylation, the IKK phosphoacceptor sites on IκB serve as an essential part of a specific recognition site for E3RSIκB/β-TrCP, an SCF-type E3 ubiquitin ligase, thereby explaining how IKK controls IκB ubiquitination and degradation. A variety of other signaling events, including phosphorylation of NF-κB, hyperphosphorylation of IKK, induction of IκB synthesis, and the processing of NF-κB precursors, provide additional mechanisms that modulate the level and duration of NF-κB activity.

Từ khóa


Tài liệu tham khảo

10.1016/0092-8674(86)90807-X

Baldwin AS. 1996. The NF-κB and IκB proteins: new discoveries and insights.Annu. Rev. Immunol.14:649–81

Ghosh S, May MJ, Kopp EB. 1998. NFκB and Rel proteins: evolutionarily conserved mediators of immune responses.Annu. Rev. Immunol.16:225–60

10.1016/S0065-230X(08)60257-2

10.1146/annurev.cb.10.110194.002201

10.1006/scbi.1997.0060

Whiteside ST, Israël A. 1997. I κ B proteins: structure, function and regulation.Semin. Cancer Biol.8:75–82

1997, J. Cell Sci., 110, 369, 10.1242/jcs.110.3.369

10.1128/MCB.16.5.2341

10.1101/gad.9.22.2736

10.1084/jem.188.6.1055

10.1038/34356

10.1038/nsb0198-67

10.1038/373303a0

10.1038/373311a0

10.1016/S0092-8674(00)81699-2

10.1016/S0092-8674(00)81698-0

10.1016/S0065-2776(08)60742-7

10.1056/NEJM199704103361506

10.1146/annurev.biochem.67.1.227

10.1146/annurev.immunol.15.1.749

1995, Microbiol. Rev., 59, 481, 10.1128/mr.59.3.481-505.1995

10.1006/meth.1998.0646

Baichwal VR, Baeuerle PA. 1997. Activate NF-κB or die?Curr. Biol.7:R94–96

10.1006/scbi.1997.0062

1996, Oncogene, 13, 1367

10.1006/scbi.1997.0061

Grilli M, Memo M. 1999. NF-κB/Rel proteins: a point of convergence of signalling pathways relevant in neuronal function and dysfunction.Biochem. Pharmacol.57:1–7

10.1038/sj.onc.1202088

10.1073/pnas.95.14.8211

10.1183/09031936.98.12010221

10.1136/gut.43.6.856

10.1128/MCB.15.5.2809

10.1126/science.7878466

10.1128/MCB.15.3.1302

10.1128/MCB.16.4.1295

10.1002/j.1460-2075.1995.tb07287.x

10.1128/MCB.15.10.5339

10.1038/25159

10.1016/S0092-8674(00)80752-7

10.1101/gad.13.5.505

10.1101/gad.9.13.1586

10.1073/pnas.92.24.11259

10.1074/jbc.271.1.376

10.1073/pnas.92.23.10599

Lin Y-C, Brown K, Siebenlist U. 1995. Activation of NF-κB requires proteolysis of the inhibitor IκB: Signal-induced phosphorylation of IκB alone does not release active NF-κB.Proc. Natl. Acad. Sci. USA92:3003–9

10.1016/S0092-8674(00)80153-1

10.1073/pnas.96.2.429

10.1093/emboj/17.17.5170

10.1073/pnas.95.22.13012

10.1038/41493

Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A. 1997. IKK-1 and IKK-2: cytokineactivated IκB kinases essential for NFκB activation.Science278:860–66

10.1016/S0092-8674(00)81064-8

10.1016/S0092-8674(00)81842-5

10.1016/S0092-8674(00)80406-7

10.1016/S0092-8674(00)80344-X

10.1126/science.278.5339.866

1995, Cell. Mol. Biol. Res., 41, 537

10.1038/26261

10.1016/S0092-8674(00)81466-X

10.1128/MCB.19.2.1526

10.1073/pnas.96.3.1042

1990, J. Immunol., 145, 3080, 10.4049/jimmunol.145.9.3080

10.1038/26254

10.1046/j.1432-1327.1999.00028.x

10.1016/S1097-2765(00)80179-3

Database, YP. Yeast Protein Database http://www.com/database/YPD/blastsw/ yeast/human/IK13.html

Zandi E, Chen Y, Karin M. 1998. Direct phosphorylation of IκB by IKKα and IKKβ: discrimination between free and NF-κB-bound substrate.Science281:1360–63

10.1126/science.284.5412.321

10.1084/jem.189.11.1839

10.1016/S1074-7613(00)80042-4

10.1074/jbc.274.22.15297

10.1074/jbc.273.20.12041

10.1074/jbc.273.46.30736

10.1073/pnas.95.7.3792

10.1126/science.284.5412.309

10.1016/S0092-8674(00)81092-2

10.1128/MCB.19.3.2180

10.1128/MCB.18.10.5899

10.1038/43474

10.1038/43466

10.1128/MCB.18.12.7336

10.1073/pnas.95.16.9319

10.1128/MCB.19.1.21

10.1023/A:1021925629248

10.1038/18465

10.1074/jbc.274.15.10641

10.1038/385540a0

Song HY, Régnier CH, Kirschning CJ, Goeddel DV, Rothe M. 1997. Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factorκB and c-jun N-terminal kinase (JNK/ SAPK) pathways at TNF receptor-associated factor 2.Proc. Natl. Acad. Sci. USA94:9792–96

Baud V, Liu Z-G, Bennett B, Suzuki N, Xia Y, Karin M. 1999. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an N-terminal effector domain.Genes Dev.13:1297– 308

10.1126/science.284.5412.316

10.1126/science.284.5412.313

10.1038/8780

10.1093/intimm/8.1.23

10.1101/gad.12.21.3369

10.1016/S1074-7613(00)80390-8

10.1016/S1074-7613(00)80391-X

10.1073/pnas.95.5.2307

10.1146/annurev.ge.29.120195.002103

10.1101/gad.5.10.1892

10.1016/0092-8674(91)90014-P

10.1038/ng0197-42

10.1038/ng0197-36

10.1038/376167a0

10.1016/S1074-7613(00)80451-3

10.1073/pnas.96.6.2994

Vandenabeele P, Declercg W, Beyaert R, Fiers W. 1995. Two tumour necrosis factor receptors: structure and function.Trends Cell. Biol.5:392–99

10.1038/sj.onc.1202568

10.1016/S0898-6568(98)00018-7

10.1073/pnas.90.13.6155

Auron PE. 1998. The interleukin 1 receptor: ligand interactions and signal transduction.Cytokine Growth Factor Rev.9:221–37

10.1016/S1074-7613(00)80535-X

10.1074/jbc.270.23.13757

Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z. 1997. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex.Immunity7:837–47

Cao Z, Henzel WJ, Gao X. 1996. IRAK: a kinase associated with the interleukin1 receptor.Science271:1128–31

10.1126/science.278.5343.1612

10.1038/383443a0

10.1101/gad.12.18.2821

10.1016/S1359-6101(98)00023-9

10.1038/19110

10.1126/science.7544915

Liu Z-G, Hu H, Goeddel DV, Karin M. 1996. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis, while NF-κB activation prevents cell death.Cell87:565– 76

Takeuchi M, Rothe M, Goeddel DV. 1996. Anatomy of TRAF2: distinct domains for nuclear factor-κB activation and association with tumor necrosis factor signaling proteins.J. Biol. Chem.16:19935–42

10.1074/jbc.271.25.14661

10.1101/gad.13.8.1015

10.1074/jbc.273.35.22681

10.1074/jbc.272.51.32102

10.1126/science.275.5296.90

10.1016/S1097-2765(00)80283-X

10.1016/S0959-437X(96)80062-1

Belvin MP, Anderson KV. 1996. A conserve signaling pathway: theDrosophilatoll-dorsal pathway.Annu. Rev. Dev. Biol.12:393–416

10.1006/scbi.1997.0059

10.1006/dbio.1996.0308

10.1038/35154

10.1016/S0014-5793(99)00322-1

10.1042/0264-6021:3390227

10.1016/S0952-7915(99)80003-X

10.1126/science.284.5418.1313

10.1038/32195

Dushay MS, Asling B, Hultmark D. 1996. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila.Proc. Natl. Acad. Sci. USA93:10343–47

Baumeister W, Walz J, Zuhl F, Seemuller E. 1998. The proteasome: paradigm of a self-compartmentalizing protease.Cell92:367–80

10.1146/annurev.genet.30.1.405

10.1146/annurev.biochem.67.1.425

10.1016/S0968-0004(97)01122-5

10.1096/fasebj.11.14.9409544

Varshavsky A. 1996. The N-end rule: functions, mysteries, uses.Proc. Natl. Acad. Sci. USA93:12142–49

10.1016/0092-8674(93)90384-3

10.1093/emboj/16.21.6325

10.1038/373081a0

10.1038/10039

Zachariae W, Nosmyth K. 1999. Whose end is destruction: cell cycle division and the anaphase promoting complex.Genes Dev.13:2039–58

Yamano H, Tsurumi C, Gannon J, Hunt T. 1998. The role of the destruction box and its neighbouring lysine residues in cyclin B for anaphase ubiquitin-dependent proteolysis in fission yeast: defining the D-box receptor.EMBO J.17:5670– 78

10.1016/S1097-2765(00)80126-4

10.1016/S1097-2765(00)80286-5

Peters JM. 1998. SCF and APC: the yin and yang of cell cycle regulated proteolysis.Curr. Opin. Cell. Biol.10:759–68

Patton EE, Willems AR, Tyers M. 1998. Combinatorial control in ubiquitindependent proteolysis: Don't Skp the Fbox hypothesis.Trends Genet.14:236– 43

10.1101/gad.13.12.1614

10.1016/S1097-2765(00)80482-7

10.1126/science.284.5414.657

10.1038/20459

10.1128/MCB.18.2.732

10.1126/science.284.5414.662

10.1128/MCB.16.3.1058

10.1093/emboj/16.21.6486

10.1101/gad.7.7a.1266

10.1002/j.1460-2075.1993.tb06157.x

10.1093/emboj/16.13.3797

10.1126/science.275.5307.1790

10.1126/science.275.5307.1787

1998, Cancer Res., 58, 1344

10.1002/(SICI)1098-2264(199805)22:1<37::AID-GCC5>3.3.CO;2-P

1998, Cancer Res., 58, 2524

1998, Cancer Res., 58, 896

1998, Cancer Res., 58, 2520

1998, Cancer Res., 58, 1130

10.1073/pnas.95.15.8847

10.1038/7747

Spevak W, Keiper BD, Stratowa C, Castanon MJ. 1993.Saccharomyces cerevisiae cdc15mutants arrested at a late stage in anaphase are rescued byXenopuscDNAs encoding N-ras or a protein with beta-transducin repeats.Mol. Cell. Biol.13:4953–66. Erratum. 1993. 13(11):7199

10.1016/S1097-2765(00)80056-8

10.1006/bbrc.1999.0289

10.1073/pnas.96.7.3859

10.1074/jbc.274.12.7941

10.1101/gad.13.3.284

10.1101/gad.13.21.2751

10.1038/sj.onc.1202760

10.1016/S0092-8674(00)81376-8

1996, Nature, 379, 847

10.1038/360597a0

10.1006/geno.1999.5792

10.1016/S0960-9822(99)80091-8

10.1093/emboj/18.9.2401

10.1038/sj.onc.1202653

10.1073/pnas.96.11.6273

10.1016/S0925-4773(98)00134-8

10.1016/S0304-419X(97)00008-5

10.1016/S0165-4608(97)00479-2

10.1002/(SICI)1098-2264(199808)22:4<295::AID-GCC5>3.3.CO;2-R

10.1038/sj.onc.1202073

10.1126/science.274.5288.782

Wang C-Y, Mayo MW, Baldwin AS Jr. 1996. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB.Science274:784–87

10.1016/S0092-8674(00)81409-9

10.1038/354395a0

10.1016/S0092-8674(94)90482-0

Orian A, Whiteside S, Israël A, Stancovski I, Schwartz AL, Ciechanover A. 1995. Ubiquitin-mediated processing of NF-κB transcriptional activator precursor p105: reconstitution of a cell-free system and identification of the ubiquitin-carrier protein, E2, and a novel ubiquitin-protein ligase, E3, involved in conjugation.J. Biol. Chem.270:21707– 14

10.1074/jbc.273.15.8820

10.1074/jbc.271.11.6084

10.1093/nar/21.22.5059

10.1093/emboj/18.17.4766

10.1101/gad.7.4.705

10.1038/16946

10.1016/S0092-8674(00)81634-7

10.1128/MCB.16.5.2248

10.1073/pnas.94.23.12616

Sharipo A, Imreh M, Leonchiks A, Imreh S, Masucci MG. 1998. A minimal glycine-alanine repeat prevents the interaction of ubiquitinated I κB alpha with the proteasome: a new mechanism for selective inhibition of proteolysis.Nat. Med.4:939–44

Orian A, Schwartz AL, Israël A, Whiteside S, Kahana C, Ciechanover A. 1999. Structural motifs involved in ubiquitinmediated processing of the NF-κB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain.Mol. Cell. Biol.19:3664–73

10.1074/jbc.273.3.1409

10.1074/jbc.273.45.29411

10.1016/S0092-8674(00)80222-6

10.1101/gad.13.5.556

Sachdev S, Hoffmann A, Hannink M. 1998. Nuclear localization of IκBα is mediated by the second ankyrin repeat: the IκBα ankyrin repeats define a novel class ofcis-acting nuclear import sequences.Mol. Cell. Biol.18:2524–34

10.1074/jbc.274.10.6804

10.1128/MCB.15.5.2689

10.1016/0092-8674(95)90435-2

10.1093/emboj/18.23.6682

10.1128/MCB.16.4.1401

10.1128/MCB.16.3.899

10.1128/MCB.16.7.3554

10.1128/MCB.16.10.5444

10.1128/MCB.17.9.5386

10.1074/jbc.272.36.22377

10.1128/MCB.17.8.4390

10.1074/jbc.274.19.13010

10.1146/annurev.iy.12.040194.001041

1999, Clin. Chem., 45, 7, 10.1093/clinchem/45.1.7

Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. 1995. Immunosuppression by glucocorticoids: Inhibition of NF-κB activity through induction of IkB synthesis.Science270:286–90