Phosphorus resorption and tissue longevity of roots and leaves – importance for phosphorus use efficiency and ecosystem phosphorus cycles

Springer Science and Business Media LLC - Tập 476 - Trang 627-637 - 2022
Erik J. Veneklaas1
1School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Australia

Tóm tắt

Plants recycle substantial amounts of phosphorus (P) from senescing tissues, reducing the need to take up P from soils. This paper reviews P recycling in plants, factors that determine its quantitative importance, and evidence that species from low-P ecosystems possess traits that enhance P recycling. It focuses on roots and leaves where most P turnover occurs. Knowledge of root traits and dynamics lags far behind that of leaves, but P concentrations, lifespans, resorption percentages and biomass allocation of roots are all comparable to those of leaves. Relationships among traits that influence P recycling appear more complex in roots than in leaves. Long root lifespans may not be adaptive in soils with very low P availability. At the plant level, the quantitative importance of P resorption to support P requirements decreases with net growth rate and with tissue longevity. Leaf lifespans are negatively correlated with growth rates and resource availability, but root lifespans may not be, indicating that further research into root dynamics and P resorption is essential to understand the role of roots in both P conservation and P acquisition.

Tài liệu tham khảo

Achat DL, Pousse N, Nicolas M, Augusto L (2018) Nutrient remobilization in tree foliage as affected by soil nutrients and leaf life span. Ecol Monogr 88:408–428. https://doi.org/10.1002/ecm.1300 Bergmann J, Weigelt A, van Der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, Valverde-Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM, Kattge J (2020) The fungal collaboration gradient dominates the root economics space in plants. Sci Adv 6:3756. https://doi.org/10.1126/sciadv.aba3756 Bünemann EK, Oberson A, Frossard E (eds) (2010) Phosphorus in action – biological processes in soil phosphorus cycling, Soil Biology, vol 26. Springer, Heidelberg Carmona CP, Bueno CG, Toussaint A, Träger S, Díaz S, Moora M, Munson AD, Pärtel M, Zobel M, Tamme R (2021) Fine-root traits in the global spectrum of plant form and function. Nature 597:683–687. https://doi.org/10.1038/s41586-021-03871-y Chapin FS III, Bieleski RL (1982) Mild phosphorus stress in barley and a related low-phosphorus-adapted barleygrass: Phosphorus fractions and phosphate absorption in relation to growth. Physiol Plant 54:309–317 Chapin FS III, Matson PA, Vitousek PM (2011) Principles of terrestrial ecosystem ecology, 2nd edn. Springer, New York Chen G, Hobbie SE, Reich PB, Yang Y, Robinson D (2019) Allometry of fine roots in forest ecosystems. Ecol Lett 22:322–331. https://doi.org/10.1111/ele.13193 Comas LH, Mueller KE, Taylor LL, Midford PE, Callahan HS, Beerling DJ (2012) Evolutionary patterns and biogeochemical significance of angiosperm root traits. Int J Plant Sci 173:584–595. https://doi.org/10.1086/665823 Das B, Huth N, Probert M, Condron L, Schmidt S (2019) Soil phosphorus modeling for modern agriculture requires balance of science and practicality: A perspective. J Environ Qual 48:1281–1294. https://doi.org/10.2134/jeq2019.05.0201 De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Wang YP, Luo Y, Jain AK, El-Masri B, Hickler T, Wårlind D (2014) Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol 203:883–899. https://doi.org/10.1111/nph.12847 Eckstein RL, Karlsson PS, Weih M (1999) Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions. New Phytol 143:177–189. https://doi.org/10.1046/j.1469-8137.1999.00429.x Ellsworth DS, Anderson IC, Crous KY, Cooke J, Drake JE, Gherlenda AN, Gimeno TE, Macdonald CA, Medlyn BE, Powell JR, Tjoelker MG (2017) Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat Clim Chang 7:279–282. https://doi.org/10.1038/nclimate3235 Elser J, Bennett E (2011) A broken biogeochemical cycle. Nature 478:29–31. https://doi.org/10.1038/478029a Fleischer K, Dolman AJ, van der Molen MK, Rebel KT, Erisman JW, Wassen MJ, Pak B, Lu X, Rammig A, Wang YP (2019) Nitrogen deposition maintains a positive effect on terrestrial carbon sequestration in the 21st century despite growing phosphorus limitation at regional scales. Global Biogeochem Cycles 33:810–824. https://doi.org/10.1029/2018GB005952 Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010) Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytol 186:879–889. https://doi.org/10.1111/j.1469-8137.2010.03228.x Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JH (2013) Linking litter decomposition of above-and below-ground organs to plant–soil feedbacks worldwide. J Ecol 101:943–952. https://doi.org/10.1111/1365-2745.12092 Gill AL, Finzi AC (2016) Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecol Lett 19:1419–1428. https://doi.org/10.1111/ele.12690 Goll DS, Vuichard N, Maignan F, Jornet-Puig A, Sardans J, Violette A, Peng S, Sun Y, Kvakic M, Guimberteau M, Guenet B (2017) A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geoscientific Model Development 10:3745–3770. https://doi.org/10.5194/gmd-10-3745-2017 Guerrero-Ramirez N, Mommer L, Freschet GT et al (2021) Global Root Traits (GRooT) Database. Glob Ecol Biogeogr 30:25–37. https://doi.org/10.1111/geb.13179 Hayes PE, Clode PL, Oliveira RS, Lambers H (2018) Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: An adaptation improving phosphorus-use efficiency. Plant, Cell Environ 41:605–619. https://doi.org/10.1111/pce.13124 Hayes P, Turner BL, Lambers H, Laliberté E (2014) Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J Ecol 102:396–410. https://doi.org/10.1111/1365-2745.12196 Jiang M, Caldararu S, Zaehle S, Ellsworth DS, Medlyn BE (2019) Towards a more physiological representation of vegetation phosphorus processes in land surface models. New Phytol 222:1223–1229. https://doi.org/10.1111/nph.15688 Johnson DW, Turner J (2019) Tamm Review: Nutrient cycling in forests: A historical look and newer developments. For Ecol Manage 444:344–373. https://doi.org/10.1016/j.foreco.2019.04.052 Kattge J, Bönisch G, Díaz S et al (2020) TRY plant trait database - enhanced coverage and open access. Glob Change Biol 26:119–188. https://doi.org/10.1111/gcb.14904 Killingbeck KT (2004) Nutrient resorption. In: Noodén L (ed) Plant cell death processes. Amsterdam: Elsevier, pp 215–226. https://doi.org/10.1016/B978-012520915-1/50017-5 Kobe RK, Lepczyk CA, Iyer M (2005) Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86:2780–2792. https://doi.org/10.1890/04-1830 Kunkle JM, Walters MB, Kobe RK (2009) Senescence-related changes in nitrogen in fine roots: mass loss affects estimation. Tree Physiol 29:715–723. https://doi.org/10.1093/treephys/tpp004 Laliberté E (2017) Below-ground frontiers in trait-based plant ecology. New Phytol 213:1597–1603. https://doi.org/10.1111/nph.14247 Laliberté E, Grace JB, Huston MA, Lambers H, Teste FP, Turner BL, Wardle DA (2013) How does pedogenesis drive plant diversity? Trends Ecol Evol 28:331–340. https://doi.org/10.1016/j.tree.2013.02.008 Lambers H (2022) Phosphorus acquisition and utilization in plants. Annu Rev Plant Biol 73:11–126. https://doi.org/10.1146/annurev-arplant-102720-125738 Lambers H, Brundrett MC, Raven JA, Hopper SD (2011) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 348:7–27. https://doi.org/10.1007/s11104-011-0977-6 Lambers H, Cawthray GR, Giavalisco P, Kuo J, Laliberté E, Pearse SJ, Scheible WR, Stitt M, Teste F, Turner BL (2012) Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytologist 196:1098–108. https://doi.org/10.1111/j.1469-8137.2012.04285.x Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713. https://doi.org/10.1093/aob/mcl114 Lambers H, Oliveira RS (2019) Mineral Nutrition. In: Plant Physiological Ecology. Springer, Cham. https://doi.org/10.1007/978-3-030-29639-1_9 Laughlin DC, Mommer L, Sabatini FM, Bruelheide H, Kuyper TW, McCormack ML, Bergmann J, Freschet GT, Guerrero-Ramírez NR, Iversen CM, Kattge J (2021) Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology & Evolution 5:1123–1134. https://doi.org/10.1038/s41559-021-01471-7 Netzer F, Schmid C, Herschbach C, Rennenberg H (2017) Phosphorus nutrition of European beech (Fagus sylvatica L.) during annual growth depends on tree age and P-availability in the soil. Environ Exp Bot 137:194–207. https://doi.org/10.1016/j.envexpbot.2017.02.009 Netzer F, Herschbach C, Oikawa A, Okazaki Y, Dubbert D, Saito K, Rennenberg H (2018) Seasonal alterations in organic phosphorus metabolism drive the phosphorus economy of annual growth in F. sylvatica trees on P-impoverished soil. Frontiers in Plant Science 9:723. https://doi.org/10.3389/fpls.2018.00723 Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x Raven JA, Lambers H, Smith SE, Westoby M (2018) Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytol 217:1420–1427. https://doi.org/10.1111/nph.14967 Reich PB (2014) The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301. https://doi.org/10.1111/1365-2745.12211 Shane MW, Cramer MD, Funayama-Noguchi S, Cawthray GR, Millar AH, Day DA, Lambers H (2004) Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiol 135:549–560. https://doi.org/10.1104/pp.103.035659 Simpson RJ, Oberson A, Culvenor RA, Ryan MH, Veneklaas EJ, Lambers H, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Richardson AE (2011) Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349:89–120. https://doi.org/10.1007/s11104-011-0880-1 Sulpice R, Ishihara H, Schlereth A et al (2014) Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species. Plant, Cell Environ 37:1276–1298. https://doi.org/10.1111/pce.12240 Tang Z, Xu W, Zhou G et al (2018) Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proc Natl Acad Sci 115:4033–4038. https://doi.org/10.1073/pnas.1700295114 Teste FP, Marchesini VA, Veneklaas EJ, Dixon KW, Lambers H (2018) Root dynamics and survival in a nutrient-poor and species-rich woodland under a drying climate. Plant Soil 424:91–102. https://doi.org/10.1007/s11104-017-3323-9 Teste FP, Dixon KW, Lambers H, Zhou J, Veneklaas EJ (2020) The potential for phosphorus benefits through root placement in the rhizosphere of phosphorus-mobilising neighbours. Oecologia 193:843–855. https://doi.org/10.1007/s00442-020-04733-6 Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, Laliberté E (2017) Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355:173–176. https://doi.org/10.1126/science.aai8291 Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195:306–320. https://doi.org/10.1111/j.1469-8137.2012.04190.x Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82:205–220. https://doi.org/10.1890/11-0416.1 Vicca S, Stocker BD, Reed S, Wieder WR, Bahn M, Fay PA, Janssens IA, Lambers H, Peñuelas J, Piao S, Rebel KT (2018) Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling. Environ Res Lett 13:125006. https://doi.org/10.1088/1748-9326/aaeae7 Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572 Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15. https://doi.org/10.1890/08-0127.1 Wassen MJ, Schrader J, van Dijk J, Eppinga MB (2021) Phosphorus fertilization is eradicating the niche of northern Eurasia’s threatened plant species. Nat Ecol Evol 5:67–73. https://doi.org/10.1038/s41559-020-01323-w Weedon JT, Cornwell WK, Cornelissen JH, Zanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56. https://doi.org/10.1111/j.1461-0248.2008.01259.x Weemstra M, Mommer L, Visser EJ, van Ruijven J, Kuyper TW, Mohren GM, Sterck FJ (2016) Towards a multidimensional root trait framework: a tree root review. New Phytol 211:1159–1169. https://doi.org/10.1111/nph.14003 Weemstra M, Kiorapostolou N, van Ruijven J, Mommer L, de Vries J, Sterck F (2020) The role of fine-root mass, specific root length and life span in tree performance: a whole-tree exploration. Funct Ecol 34:575–585. https://doi.org/10.1111/1365-2435.13520 Wen Z, Li H, Shen Q, Tang X, Xiong C, Li H, Pang J, Ryan MH, Lambers H, Shen J (2019) Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytol 223:882–895. https://doi.org/10.1111/nph.15833 Wen Z, White PJ, Shen J, Lambers H (2022) Linking root exudation to belowground economic traits for resource acquisition. New Phytol 233:1620–1635. https://doi.org/10.1111/nph.17854 White PJ, Veneklaas EJ (2012) Nature and nurture: the importance of seed phosphorus content. Plant Soil 357:1–8. https://doi.org/10.1007/s11104-012-1128-4 Wright IJ, Westoby M (2003) Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol 17:10–19. https://doi.org/10.1046/j.1365-2435.2003.00694.x Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827. https://doi.org/10.1038/nature02403 Wu L, Blackwell M, Dunham S, Hernández-Allica J, McGrath SP (2019) Simulation of phosphorus chemistry, uptake and utilisation by winter wheat. Plants 8:404. https://doi.org/10.3390/plants8100404 Yuan ZY, Chen HY (2015) Negative effects of fertilization on plant nutrient resorption. Ecology 96:373–380. https://doi.org/10.1890/14-0140.1 Yuan Z, Chen H, Reich P (2011) Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nat Commun 2:344. https://doi.org/10.1038/ncomms1346 Yuan ZY, Chen HY, Reich PB (2012) Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nat Commun 2:1–6. https://doi.org/10.1038/ncomms1346 Zavišić A, Polle A (2018) Dynamics of phosphorus nutrition, allocation and growth of young beech (Fagus sylvatica L.) trees in P-rich and P-poor forest soil. Tree Physiol 38:37–51. https://doi.org/10.1093/treephys/tpx146