Phospholipase C in Living Cells

Journal of General Physiology - Tập 126 Số 3 - Trang 243-262 - 2005
Lisa F. Horowitz1, Wiebke Hirdes2,3, Byung‐Chang Suh2, Donald W. Hilgemann4, Ken Mackie2,5, Bertil Hille2
1Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195, USA.
21Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
3University of Hamburg
42Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
53Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA 98195

Tóm tắt

We have further tested the hypothesis that receptor-mediated modulation of KCNQ channels involves depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphoinositide-specific phospholipase C (PLC). We used four parallel assays to characterize the agonist-induced PLC response of cells (tsA or CHO cells) expressing M1 muscarinic receptors: translocation of two fluorescent probes for membrane lipids, release of calcium from intracellular stores, and chemical measurement of acidic lipids. Occupation of M1 receptors activates PLC and consumes cellular PIP2 in less than a minute and also partially depletes mono- and unphosphorylated phosphoinositides. KCNQ current is simultaneously suppressed. Two inhibitors of PLC, U73122 and edelfosine (ET-18-OCH3), can block the muscarinic actions completely, including suppression of KCNQ current. However, U73122 also had many side effects that were attributable to alkylation of various proteins. These were mimicked or occluded by prior reaction with the alkylating agent N-ethylmaleimide and included block of pertussis toxin–sensitive G proteins and effects that resembled a weak activation of PLC or an inhibition of lipid kinases. By our functional criteria, the putative PLC activator m-3M3FBS did stimulate PLC, but with a delay and an irregular time course. It also suppressed KCNQ current. The M1 receptor–mediated activation of PLC and suppression of KCNQ current were stopped by lowering intracellular calcium well below resting levels and were slowed by not allowing intracellular calcium to rise in response to PLC activation. Thus calcium release induced by PLC activation feeds back immediately on PLC, accelerating it during muscarinic stimulation in strong positive feedback. These experiments clarify important properties of receptor-coupled PLC responses and their inhibition in the context of the living cell. In each test, the suppression of KCNQ current closely paralleled the expected fall of PIP2. The results are described by a kinetic model.

Từ khóa


Tài liệu tham khảo

2003, J. Biol. Chem., 278, 46886, 10.1074/jbc.M307853200

2003, Mol. Pharmacol., 63, 1043, 10.1124/mol.63.5.1043

1993, Mol. Biol. Cell., 4, 347, 10.1091/mbc.4.3.347

1996, J. Biol. Chem., 271, 7999, 10.1074/jbc.271.14.7999

2001, J. Biol. Chem., 276, 4218, 10.1074/jbc.M008491200

1989, Adv. Prostaglandin Thromboxane Leukot. Res., 19, 590

1980, Nature., 283, 673, 10.1038/283673a0

1996, Nature., 380, 595, 10.1038/380595a0

1989, Mol. Pharmacol., 35, 195

2004, Eur. J. Neurosci., 20, 2990, 10.1111/j.1460-9568.2004.03786.x

2000, Mol. Cell Biol. Res. Commun., 3, 153, 10.1006/mcbr.2000.0208

2005, Neuron., 45, 257, 10.1016/j.neuron.2005.01.004

1992, J. Physiol., 454, 59, 10.1113/jphysiol.1992.sp019254

2001, Sci. STKE., 111, RE19

2004, J. Physiol., 559, 67, 10.1113/jphysiol.2004.066944

1999, Science., 284, 1527, 10.1126/science.284.5419.1527

2004, Anal. Biochem., 330, 353, 10.1016/j.ab.2004.02.047

1994, Brain Res., 642, 237, 10.1016/0006-8993(94)90927-X

1999, J. Biol. Chem., 274, 26127, 10.1074/jbc.274.37.26127

2004, Br. J. Pharmacol., 143, 3, 10.1038/sj.bjp.0705911

2003, Traffic., 4, 201, 10.1034/j.1600-0854.2004.00071.x

2004, J. Neurosci., 24, 5079, 10.1523/JNEUROSCI.0882-04.2004

1995, Proc. Natl. Acad. Sci. USA., 92, 10472, 10.1073/pnas.92.23.10472

1998, J. Biol. Chem., 273, 14067, 10.1074/jbc.273.23.14067

1997, Biochem. J., 324, 645, 10.1042/bj3240645

2002, Anal. Biochem., 301, 243, 10.1006/abio.2001.5489

2002, Am. J. Physiol. Cell Physiol., 283, C223, 10.1152/ajpcell.00486.2001

1998, J. Cell Biol., 140, 485, 10.1083/jcb.140.3.485

2004, J. Neurosci., 24, 9513, 10.1523/JNEUROSCI.1829-04.2004

1985, Nature., 317, 536, 10.1038/317536a0

1992, Cancer Res., 52, 2835

2001, Annu. Rev. Biochem., 70, 281, 10.1146/annurev.biochem.70.1.281

2002, Br. J. Pharmacol., 137, 1173, 10.1038/sj.bjp.0704989

2005, Nat. Rev. Neurosci., 6, 139, 10.1038/nrn1608

1987, J. Biol. Chem., 262, 12511, 10.1016/S0021-9258(18)45235-0

1987, Proc. Natl. Acad. Sci. USA., 84, 6649, 10.1073/pnas.84.19.6649

2000, J. Neurosci., 20, 1710, 10.1523/JNEUROSCI.20-05-01710.2000

1994, J. Neurosci., 14, 7109, 10.1523/JNEUROSCI.14-11-07109.1994

1990, J. Pharmacol. Exp. Ther., 253, 688

1991, Science., 251, 804, 10.1126/science.1846707

1998, Curr. Biol., 8, 343, 10.1016/S0960-9822(98)70135-6

2002, J. Neurophysiol., 88, 277, 10.1152/jn.2002.88.1.277

2002, Neuron., 35, 507, 10.1016/S0896-6273(02)00790-0

2005, Curr. Opin. Neurobiol., 15, 370, 10.1016/j.conb.2005.05.005

2004, J. Gen. Physiol., 123, 663, 10.1085/jgp.200409029

2001, J. Biol. Chem., 276, 15337, 10.1074/jbc.M007194200

1998, J. Cell Biol., 143, 501, 10.1083/jcb.143.2.501

1993, J. Pharmacol. Exp. Ther., 266, 1156

2004, J. Cell Biol., 167, 1005, 10.1083/jcb.200408008

2003, Biophys. J., 84, 1317, 10.1016/S0006-3495(03)74947-9

1998, J. Biol. Chem., 273, 5037, 10.1074/jbc.273.9.5037

1984, J. Biol. Chem., 259, 11718, 10.1016/S0021-9258(20)71269-X

2005, J. Neurosci., 25, 3400, 10.1523/JNEUROSCI.3231-04.2005

1994, J. Neurochem., 63, 177, 10.1046/j.1471-4159.1994.63010177.x

2003, J. Cell Biol., 161, 779, 10.1083/jcb.200301070

2003, Annu. Rev. Physiol., 65, 761, 10.1146/annurev.physiol.65.092101.142517

2003, Neuron., 37, 963, 10.1016/S0896-6273(03)00125-9

2001, Proc. Natl. Acad. Sci. USA., 98, 6482, 10.1073/pnas.111447798