Đặc điểm hình thái, phân tử và in silico của coumarin như một chất ức chế carbapenemase để chống lại Klebsiella pneumoniae kháng carbapenem

Mahmoud Saad Abdel-Halim1, Amira M. El-Ganiny1, Basem Mansour2, Galal Yahya1, Hemat K. Abd El Latif1, Momen Askoura1
1Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
2Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt

Tóm tắt

Carbapenem là liệu pháp hàng đầu để điều trị các nhiễm trùng nghiêm trọng do Klebsiella pneumoniae kháng thuốc. Klebsiella pneumoniae kháng carbapenem (CRKP) là một trong những mối đe dọa cấp bách đối với sức khỏe con người trên toàn cầu. Nghiên cứu hiện tại nhằm mục tiêu đánh giá tiềm năng ức chế carbapenemase của coumarin và kiểm tra khả năng phục hồi hoạt động của meropenem đối với CRKP. Phương pháp khuếch tán đĩa được sử dụng để kiểm tra độ nhạy kháng sinh của các mẫu phân lập K. pneumoniae lâm sàng đối với các loại kháng sinh khác nhau. Các gen carbapenemase (NDM-1, VIM-2 và OXA-9) được phát hiện bằng PCR. Tác động của nồng độ dưới MIC của coumarin lên các mẫu CRKP được thực hiện bằng cách sử dụng thử nghiệm đĩa kết hợp, thử nghiệm ức chế enzym và thử nghiệm ô vuông. Thêm vào đó, qRT-PCR đã được sử dụng để ước lượng tác động của coumarin lên biểu hiện các gen carbapenemase. Phương pháp docking phân tử đã được sử dụng để xác nhận tương tác giữa coumarin và các vị trí gắn kết trong ba loại carbapenemase. Các mẫu phân lập K. pneumoniae lâm sàng được phát hiện là kháng đa thuốc và cho thấy kháng cao đối với meropenem. Tất cả các mẫu vi khuẩn đều mang ít nhất một gen mã hóa carbapenemase. Coumarin ức chế đáng kể các carbapenemase trong dịch chiết ngoại bào thô của CRKP. Thử nghiệm ô vuông cho thấy sự kết hợp coumarin-meropenem là cộng hưởng với chỉ số nồng độ ức chế phân đoạn ≤ 0.5. Ngoài ra, kết quả qRT-PCR cho thấy coumarin làm giảm đáng kể mức biểu hiện của các gen carbapenemase. Phân tích docking phân tử cho thấy năng lượng liên kết của coumarin với NDM1, VIM-2, OXA-48 và OXA-9 lần lượt là -7.8757, -7.1532, -6.2064 và -7.4331 Kcal/mol. Coumarin đã làm cho CRKP nhạy cảm với meropenem như một bằng chứng qua tác động ức chế hoạt tính thủy phân và biểu hiện của các carbapenemase. Các phát hiện hiện tại gợi ý rằng coumarin có thể là một giải pháp khả thi để vượt qua sự kháng carbapenem trong CRKP.

Từ khóa

#Klebsiella pneumoniae #carbapenemase #coumarin #kháng sinh #kháng thuốc

Tài liệu tham khảo

Kostyanev T, Can F. In: Pulcini C, Ergönül Ö, Can F, Beović B, editors. Chapter 1 - The Global Crisis of Antimicrobial Resistance. Antimicrobial Stewardship: Academic; 2017. pp. 3–12. O’Neill J. Review on antimicrobial resistance: tackling drug-resistant infections globally: final report and recommendations. 2016. https://amr-review.org/sites/default/ Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev. 2019;43(2):123–44. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80(3):629–61. Aurilio C, Sansone P, Barbarisi M, Pota V, Giaccari LG, Coppolino F, et al. Mechanisms of action of Carbapenem Resistance. Antibiotics. 2022;11(3):421. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect drug Resist. 2018;11:1645–58. Antibiotic resistance threats. in the United States, 2019. 2019. Karampatakis T, Tsergouli K, Iosifidis E, Antachopoulos C, Karapanagiotou A, Karyoti A, et al. Impact of active surveillance and infection control measures on carbapenem-resistant Gram-negative bacterial colonization and infections in intensive care. J Hosp Infect. 2018;99(4):396–404. Lu M-C, Tang H-L, Chiou C-S, Wang Y-C, Chiang M-K, Lai Y-C. Clonal dissemination of carbapenemase-producing Klebsiella pneumoniae: two distinct sub-lineages of sequence type 11 carrying blaKPC-2 and blaOXA-48. Int J Antimicrob Agents. 2018;52(5):658–62. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29(12):1099–106. Ghai I, Ghai S. Understanding antibiotic resistance via outer membrane permeability. Infect drug Resist. 2018;11:523–30. Abdi SN, Ghotaslou R, Ganbarov K, Mobed A, Tanomand A, Yousefi M, et al. Acinetobacter baumannii Efflux pumps and Antibiotic Resistance. Infect drug Resist. 2020;13:423–34. Chen L, Tan P, Zeng J, Yu X, Cai Y, Liao K, et al. Impact of an intervention to control imipenem-resistant Acinetobacter baumannii and its resistance mechanisms: an 8-year survey. Front Microbiol. 2021;11:610109. Garcia M. Carbapenemases: a real threat. APUA Newsl. 2013;31:4–6. Raheel A, Azab H, Hessam W, Abbadi S, Ezzat A. Detection of carbapenemase enzymes and genes among carbapenem-resistant Enterobacteriaceae isolates in Suez Canal University Hospitals in Ismailia,Egypt. Microbes Infect Dis. 2020;1(1):24–33. Taha MS, Hagras MM, Shalaby MM, Zamzam YA, Elkolaly RM, Abdelwahab MA, et al. Genotypic characterization of Carbapenem-resistant Klebsiella pneumoniae isolated from an Egyptian University Hospital. Pathogens. 2023;12(1):121. Vázquez-Ucha JC, Arca-Suárez J, Bou G, Beceiro A. New carbapenemase inhibitors: Clearing the way for the β-Lactams. Int J Mol Sci. 2020;21(23):9308. https://doi.org/10.3390/ijms21239308. Abdel-Halim MS, Askoura M, Mansour B, Yahya G, El-Ganiny AM. Vitro activity of celastrol in combination with thymol against carbapenem-resistant Klebsiella pneumoniae isolates. J Antibiot. 2022;75(12):679–90. Pal A, Tripathi A. Quercetin inhibits carbapenemase and efflux pump activities among carbapenem-resistant Gram-negative bacteria. APMIS. 2020;128(3):251–9. Zhou Y, Lv X, Chen M, Guo Y, Ding R, Liu B, et al. Characterization of Corosolic Acid as a KPC-2 inhibitor that increases the susceptibility of KPC-2-Positive Bacteria to Carbapenems. Front Pharmacol. 2020;11:1047. Wang Y-H, Avula B, Nanayakkara NPD, Zhao J, Khan IA. Cassia Cinnamon as a source of Coumarin in Cinnamon-Flavored Food and Food Supplements in the United States. J Agric Food Chem. 2013;61(18):4470–6. Matos MJ, Santana L, Uriarte E, Abreu OA, Molina E, Yordi EG. Coumarins—an important class of phytochemicals. Phytochemicals-isolation Characterisation role Hum Health. 2015;25:533–8. Mansour B, Henen MA, Bayoumi WA, El-Sayed MA, Massoud MAM. In colorectal cancer; NMR-monitored β-Catenin inhibition by a Quinoline derivative using Water-LOGSY technique. J Mol Struct. 2021;1246:131151. Al-Amiery A, Al-Majedy Y, Al-Duhaidahawi D, Kadhum A, Mohamad AB. Green antioxidants: synthesis and scavenging activity of coumarin-thiadiazoles as potential antioxidants complemented by molecular modeling studies. Free Radicals Antioxid. 2016;6:173–7. Al-Amiery AA, Al-Majedy YK, Kadhum AAH, Mohamad AB. New Coumarin Derivative as an Eco-friendly Inhibitor of Corrosion of Mild Steel in Acid Medium. Molecules. 2015;20(1):366–83. Al-Amiery A, Kadhum A, Mohamad AB. Antifungal activities of New Coumarins. Molecules. 2012;17:5713–23. Basile A, Sorbo S, Spadaro V, Bruno M, Maggio A, Faraone N, et al. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago Campestris (Apiaceae). Molecules. 2009;14(3):939–52. Al-Ayed A, Synthesis. Spectroscopy and Electrochemistry of New 3-(5-Aryl-4,5-Dihydro-1H-Pyrazol-3-yl)-4-Hydroxy-2H-Chromene-2-One 4, 5 as a Novel Class of potential antibacterial and antioxidant derivatives. Int J Org Chem. 2011;01:87–96. Al-Majedy YK, Al-Amiery AA, Kadhum AAH, Mohamad AB. Antioxidant activities of 4-Methylumbelliferone derivatives. PLoS ONE. 2016;11(5):e0156625. Reen FJ, Gutiérrez-Barranquero JA, Parages ML. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Appl Microbiol Biotechnol. 2018;102(5):2063–73. CLSI. Performance standards for Antimicrobial susceptibility testing. 28th ed. CLSI supplement M1002018. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59(3):695–700. https://doi.org/10.1128%2Faem.59.3.695-700.1993. El-Ganiny AM, El-mahdy AM, Abd El Latif HK, Ibrahem RH, Abdelsabour HI. Phenotypic and genotypic detection of beta-lactams resistance in Klebsiella pneumonia from Egyptian hospitals revealed carbapenem resistance by OXA and NDM genes. AfrJ Microbiol Res. 2016;10(10):339–47. https://doi.org/10.5897/AJMR2015.7871. Abbas HA, Kadry AA, Shaker GH, Goda RM. Impact of specific inhibitors on metallo-beta-carbapenemases detected in Escherichia coli and Klebsiella pneumoniae isolates. Microb Pathog. 2019;132:266 – 74. https://doi.org/10.1016/j.micpath.2019.05.022. Gargotti M, Lopez-Gonzalez U, Byrne HJ, Casey A. Comparative studies of cellular viability levels on 2D and 3D in vitro culture matrices. Cytotechnology. 2018;70(1):261–73. Boonyanugomol W, Kraisriwattana K, Rukseree K, Boonsam K, Narachai P. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J Infect Public Health. 2017;10(5):586–92. Bernabeu S, Poirel L, Nordmann P. Spectrophotometry-based detection of carbapenemase producers among Enterobacteriaceae. Diagn Microbiol Infect Dis. 2012;74(1):88–90. Denny BJ, Lambert PA, West PW. The flavonoid galangin inhibits the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia. FEMS Microbiol Lett. 2002;208(1):21–4. Marchiaro P, Ballerini V, Spalding T, Cera G, Mussi MA, Morán-Barrio J, et al. A convenient microbiological assay employing cell-free extracts for the rapid characterization of Gram-negative carbapenemase producers. J Antimicrob Chemother. 2008;62(2):336–44. Routsias JG, Tsakogiannis D, Katsiki M, Marinou D, Mavrouli M, Vrioni G, et al. Development of a new spectrophotometric assay for rapid detection and differentiation of KPC, MBL and OXA-48 carbapenemase-producing Klebsiella pneumoniae clinical isolates. Int J Antimicrob Agents. 2020;56(6):106211. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego Calif). 2001;25(4):402–8. King D, Strynadka N. Crystal structure of New Delhi metallo-β‐lactamase reveals molecular basis for antibiotic resistance. Protein Sci. 2011;20(9):1484–91. Büttner D, Kramer JS, Klingler FM, Wittmann SK, Hartmann MR, Kurz CG, et al. Challenges in the development of a thiol-based broad-spectrum inhibitor for metallo-β-lactamases. ACS Infect Dis. 2017;4(3):360–72. Inc CCG. Molecular operating environment (MOE) version 2019.0102. 2019, Chemical Computing Group Inc. 1010 Sherbooke St. West, Suite# 910, Montreal. Rahman TU, Zeb MA, Pu DB, Liaqat W, Ayub K, Xiao WL, et al. Density functional theory, molecular docking and bioassay studies on (S)-2-hydroxy-N-(2S, 3S, 4R, E)-1, 3, 4 trihydroxyicos-16-en-2-yl) tricosanamide. Heliyon. 2019;5(8):e02038. https://doi.org/10.1016/j.heliyon.2019.e02038. Mansour B, Salem YA, Attallah KM, El-Kawy OA, Ibrahim IT. Abdel-Aziz, N. I. Cyanopyridinone-and cyanopyridine-based Cancer Cell Pim-1 inhibitors: design, synthesis, Radiolabeling, Biodistribution, and Molecular modeling Simulation. ACS Omega. 2023;8(22):19351–66. Mansour B, El-Sherbeny MA, Al-Omary FA, Saber S, Ramadan HA, El-Baz AM, et al. New Pyrazole-clubbed pyrimidine or pyrazoline hybrids as Anti-methicillin-resistant Staphylococcus aureus agents: design, synthesis, in vitro and in vivo evaluation, and Molecular modeling Simulation. ACS Omega. 2023;8(46):44250–64. Labute P. The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. J Comput Chem. 2008;29(10):1693–8. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T: peer-reviewed J Formulary Manage. 2015;40(4):277–83. Ghosh S, Bornman C, Zafer MM. Antimicrobial Resistance threats in the emerging COVID-19 pandemic: where do we stand? J Infect Public Health. 2021;14(5):555–60. Ficik J, Andrezál M, Drahovská H, Böhmer M, Szemes T, Liptáková A, et al. Carbapenem-resistant Klebsiella pneumoniae in COVID-19 Era-challenges and solutions. Antibiotics. 2023;12(8):1285. Moon SY, Chung DR, Kim SW, Chang HH, Lee H, Jung DS, et al. Changing etiology of community-acquired bacterial meningitis in adults: a nationwide multicenter study in Korea. Eur J Clin Microbiol Infect Diseases: Official Publication Eur Soc Clin Microbiol. 2010;29(7):793–800. Xu M, Fu Y, Fang Y, Xu H, Kong H, Liu Y, et al. High prevalence of KPC-2-producing hypervirulent Klebsiella pneumoniae causing meningitis in Eastern China. Infect drug Resist. 2019;12:641–53. Reyes J, Aguilar AC, Caicedo A. Carbapenem-resistant Klebsiella pneumoniae: Microbiology Key points for clinical practice. Int J Gen Med. 2019;12:437–46. Mandal SM, Dias RO, Franco OL. Phenolic compounds in Antimicrobial Therapy. J Med Food. 2017;20(10):1031–8. Kotb S, Lyman M, Ismail G, Abd El Fattah M, Girgis SA, Etman A, et al. Epidemiology of Carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcare-associated infections Surveillance Data, 2011–2017. Antimicrob Resist Infect Control. 2020;9(1):2. Gandor NHM, Amr GE, Eldin Algammal SMS, Ahmed AA. Characterization of Carbapenem-Resistant K. Pneumoniae isolated from Intensive Care units of Zagazig University Hospitals. Antibiotics. 2022;11(8):1108. Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A, Coumarin. A Natural, Privileged and Versatile Scaffold for Bioactive compounds. Molecules. 2018;23(2):250. Blair JM, Richmond GE, Piddock LJ. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014;9(10):1165–77. Chetri S, Bhowmik D, Paul D, et al. AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli. BMC Microbiol. 2019;19:210. Martin ALAR, De Menezes IRA, Sousa AK, Farias PAM, Dos Santos FAV, Freitas TS, et al. In vitro and in silico antibacterial evaluation of coumarin derivatives against MDR strains of Staphylococcus aureus and Escherichia coli. Microb Pathog. 2023;177:106058. Odabaş Köse E, Koyuncu Özyurt Ö, Bilmen S, Er H, Kilit C, Aydemir E. Quercetin: synergistic interaction with antibiotics against colistin-resistant Acinetobacter baumannii. Antibiotics. 2023;12(4):739. https://doi.org/10.3390/antibiotics12040739. Vasudevan A, Kesavan DK, Wu L, Su Z, Wang S, Ramasamy MK et al. In silico and in vitro Screening of Natural Compounds as Broad-Spectrum β -Lactamase Inhibitors against Acinetobacter baumannii New Delhi Metallo- β -lactamase-1 (NDM-1). Biomed Research International. 2022; 2022: Article ID 4230788.