Phenolic-protein interactions: insight from in-silico analyses – a review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdollahi, K., Ince, C., Condict, L., Hung, A., & Kasapis, S. (2020). Combined spectroscopic and molecular docking study on the pH dependence of molecular interactions between β-lactoglobulin and ferulic acid. Food Hydrocolloids, 101, 105461. https://doi.org/10.1016/j.foodhyd.2019.105461.
Aewsiri, T., Benjakul, S., Visessanguan, W., Eun, J. B., Wierenga, P. A., & Gruppen, H. (2009). Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds. Food Chemistry, 117(1), 160–168. https://doi.org/10.1016/j.foodchem.2009.03.092.
Allahdad, Z., Varidi, M., Zadmard, R., Saboury, A. A., & Haertlé, T. (2019). Binding of β-carotene to whey proteins: Multi-spectroscopic techniques and docking studies. Food Chemistry, 277, 96–106. https://doi.org/10.1016/j.foodchem.2018.10.057.
Al-Shabib, N. A., Khan, J. M., Malik, A., Tabish Rehman, M., AlAjmi, M. F., Husain, F. M., … Altwaijry, N. (2020). Molecular interaction of tea catechin with bovine β-lactoglobulin: A spectroscopic and in silico studies. Saudi Pharmaceutical Journal, 28(3), 238–245. https://doi.org/10.1016/j.jsps.2020.01.002.
Alu’datt, M. H., Al-U’datt, D. G., Tranchant, C. C., Alhamad, M. N., Rababah, T., Gammoh, S., … Alli, I. (2020). Phenolic and protein contents of differently prepared protein co-precipitates from flaxseed and soybean and antioxidant activity and angiotensin inhibitory activity of their phenolic fractions. NFS Journal, 21, 65–72. https://doi.org/10.1016/j.nfs.2020.11.001.
Araghi, M., Moslehi, Z., Nafchi, A. M., Mostahsan, A., Salamat, N., & Garmakhany, A. D. (2015). Cold water fish gelatin modification by a natural phenolic cross-linker (ferulic acid and caffeic acid). Food Science and Nutrition, 3(5), 370–375. https://doi.org/10.1002/fsn3.230.
Asano, K., Shinagawa, K., & Hashimoto, N. (1982). Characterization of haze-forming proteins of beer and their roles in chill haze formation. American Society of Brewing Chemists, 40(4), 147–154. https://doi.org/10.1094/ASBCJ-40-0147.
Bandyopadhyay, P., Ghosh, A. K., & Ghosh, C. (2012). Recent developments on polyphenol-protein interactions: Effects on tea and coffee taste, antioxidant properties and the digestive system. Food and Function, 3(6), 592–605. https://doi.org/10.1039/c2fo00006g.
Banerjee, S., Ji, C., Mayfield, J. E., Goel, A., Xiao, J., Dixon, J. E., & Guo, X. (2018). Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity. Proceedings of the National Academy of Sciences, 1–6. https://doi.org/10.1073/pnas.1806797115.
Betz, M., Steiner, B., Schantz, M., Oidtmann, J., Mäder, K., Richling, E., & Kulozik, U. (2012). Antioxidant capacity of bilberry extract microencapsulated in whey protein hydrogels. Food Research International, 47(1), 51–57. https://doi.org/10.1016/j.foodres.2012.01.010.
Bohn, T. (2014). Dietary factors affecting polyphenol bioavailability. Nutrition Reviews, 72(7), 429–452. https://doi.org/10.1111/nure.12114.
Bongartz, V., Brandt, L., Gehrmann, M. L., Zimmermann, B. F., Schulze-kaysers, N., & Schieber, A. (2016). Evidence for the formation of benzacridine derivatives in alkaline-treated sunflower meal and model solutions. Molecules, 21(1), 1–9. https://doi.org/10.3390/molecules21010091.
Bouayed, J., Hoffmann, L., & Bohn, T. (2011). Total phenolics , flavonoids , anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14–21. https://doi.org/10.1016/j.foodchem.2011.02.052.
Buitimea-Cantúa, N. E., Gutiérrez-Uribe, J. A., & Serna-Saldívar, S. O. (2018). Phenolic-protein interactions: Effects on food properties and health benefits. Journal of Medicinal Food, 21(2), 188–198. https://doi.org/10.1089/jmf.2017.0057.
Canon, F., Ballivian, R., Chirot, F., Antoine, R., Sarni-manchado, P., Dugourd, P., & Lyon, D. (2011). Folding of a salivary intrinsically disordered protein upon binding to tannins. Journal of American Chemicals Society, 133(20), 7847–7852. https://doi.org/10.1021/ja200534f.
Chanphai, P., Bourassa, P., Kanakis, C. D., Tarantilis, P. A., Polissiou, M. G., & Tajmir-riahi, H. A. (2017). Review on the loading efficacy of dietary tea polyphenols with milk proteins. Food Hydrocolloids, 77, 322–328. https://doi.org/10.1016/j.foodhyd.2017.10.008.
Charlton, A. J., Baxter, N. J., Khan, M. L., Moir, A. J. G., Haslam, E., Davies, A. P., & Williamson, M. P. (2002). Polyphenol/peptide binding and precipitation. Journal of Agricultural and Food Chemistry, 50(6), 1593–1601. https://doi.org/10.1021/jf010897z.
Chen, W., Chao, C., Yu, J., Copeland, L., Wang, S., & Wang, S. (2021). Effect of protein-fatty acid interactions on the formation of starch-lipid-protein complexes. Food Chemistry, 364. https://doi.org/10.1016/j.foodchem.2021.130390.
Chen, Y. Z., & Zhi, D. G. (2001). Ligand - protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins, 43(2), 217–226. https://doi.org/10.1002/1097-0134(20010501)43:2<217::aid-prot1032>3.0.co;2-g. PMID: 11276090.
Colahan-Sederstrom, P. M., & Peterson, D. G. (2005). Inhibition of key aroma compound generated during ultrahigh-temperature processing of bovine milk via epicatechin addition. Journal of Agricultural and Food Chemistry, 53(2), 398–402. https://doi.org/10.1021/jf0487248.
Czubinski, J., & Dwiecki, K. (2017). A review of methods used for investigation of protein–phenolic compound interactions. International Journal of Food Science and Technology, 52(3), 573–585. https://doi.org/10.1111/ijfs.13339.
Fan, Y., Zhang, Y., Yokoyama, W., & Yi, J. (2017). β-Lactoglobulin-chlorogenic acid conjugate-based nanoparticles for delivery of (−)-epigallocatechin-3-gallate. RSC Advances, 7(35), 21366–21374. https://doi.org/10.1039/c6ra28462k.
Feng, J., Cai, H., Wang, H., Li, C., & Liu, S. (2017). Improved oxidative stability of fish oil emulsion by grafted ovalbumin-catechin conjugates. Food Chemistry, 241, 60–69. https://doi.org/10.1016/j.foodchem.2017.08.055.
Fu, S., Wu, C., Wu, T., Yu, H., Yang, S., & Hu, Y. (2017). Preparation and characterisation of Chlorogenic acid-gelatin: A type of biologically active film for coating preservation. Food Chemistry, 221, 657–663. https://doi.org/10.1016/j.foodchem.2016.11.123.
Fujimoto, A., & Masuda, T. (2012). Chemical interaction between polyphenols and a cysteinyl thiol under radical oxidation conditions. Journal of Agricultural and Food Chemistry, 60(20), 5142–5151. https://doi.org/10.1021/jf3008822.
Ginsburg, I., Koren, E., Shalish, M., Kanner, J., & Kohen, R. (2012). Saliva increases the availability of lipophilic polyphenols as antioxidants and enhances their retention in the oral cavity. Archives of Oral Biology, 57(10), 1327–1334. https://doi.org/10.1016/j.archoralbio.2012.04.019.
Gorelik, S., Ligumsky, M., Kohen, R., & Kanner, J. (2008). A novel function of red wine polyphenols in humans: Prevention of absorption of cytotoxic lipid peroxidation products. The FASEB Journal, 22(1), 41–46. https://doi.org/10.1096/fj.07-9041com.
Grgić, J., Šelo, G., Planinić, M., Tišma, M., & Bucić-Kojić, A. (2020). Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants (Basel), 9(10), 923. https://doi.org/10.3390/antiox9100923.
Gu, L., Su, Y., Zhang, M., Chang, C., Li, J., McClements, D. J., & Yang, Y. (2017). Protection of β-carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates. Food Research International, 96, 84–93. https://doi.org/10.1016/j.foodres.2017.03.015.
Guan, H., Zhang, W., Sun-Waterhouse, D., Jiang, Y., Li, F., Waterhouse, G. I. N., & Li, D. (2021). Phenolic-protein interactions in foods and post ingestion: Switches empowering health outcomes. Trends in Food Science and Technology, 118, 71–86. https://doi.org/10.1016/j.tifs.2021.08.033.
Han, J., Du, Y., Yan, J., Jiang, X., Wu, H., & Zhu, B. (2021). Effect of non-covalent binding of phenolic derivatives with scallop (Patinopecten yessoensis) gonad protein isolates on protein structure and in vitro digestion characteristics. Food Chemistry, 357. https://doi.org/10.1016/j.foodchem.2021.129690.
Haratifar, S., Meckling, K. A., & Corredig, M. (2014). Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells. Journal of Dairy Science, 97(2), 672–678. https://doi.org/10.3168/jds.2013-7263.
Hasni, I., Bourassa, P., Hamdani, S., Samson, G., & Carpentier, R. (2011). Interaction of milk a - and b -caseins with tea polyphenols. Food Chemistry, 126(2), 630–639. https://doi.org/10.1016/j.foodchem.2010.11.087.
Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097.
Hassan, N. M., Alhossary, A. A., Mu, Y., & Kwoh, C. K. (2017). Protein-ligand blind docking using quickVina-W with inter-process spatio-temporal integration. Scientific Reports, 7(1), 15451. https://doi.org/10.1038/s41598-017-15571-7.
Ikeda, M., Ueda-Wakagi, M., Hayashibara, K., Kitano, R., Kawase, M., Kaihatsu, K., … Ashida, H. (2017). Substitution at the C-3 position of catechins has an influence on the binding affinities against serum albumin. Molecules, 22(2), 1–12. https://doi.org/10.3390/molecules22020314.
Jiang, L., Liu, Y., Li, L., Qi, B., Ju, M., Xu, Y., … Sui, X. (2019). Covalent conjugates of anthocyanins to soy protein: Unravelling their structure features and in vitro gastrointestinal digestion fate. Food Research International, 120, 603–609. https://doi.org/10.1016/j.foodres.2018.11.011.
Kanakis, C. D., Hasni, I., Bourassa, P., Tarantilis, P. A., Polissiou, M. G., & Tajmir-riahi, H. (2011). Milk b -lactoglobulin complexes with tea polyphenols. Food Chemistry, 127(3), 1046–1055. https://doi.org/10.1016/j.foodchem.2011.01.079.
Kaur, J., Katopo, L., Hung, A., Ashton, J., & Kasapis, S. (2018). Combined spectroscopic, molecular docking and quantum mechanics study of β-casein and p-coumaric acid interactions following thermal treatment. Food Chemistry, 252, 163–170. https://doi.org/10.1016/j.foodchem.2018.01.091.
Keppler, J. K., Schwarz, K., & van der Goot, A. J. (2020). Covalent modification of food proteins by plant-based ingredients (polyphenols and organosulphur compounds): A commonplace reaction with novel utilization potential. Trends in Food Science and Technology, 101, 38–49. https://doi.org/10.1016/j.tifs.2020.04.023.
Lacroix, S., Klicic Badoux, J., Scott-Boyer, M.-P., Parolo, S., Matone, A., Priami, C., … Moco, S. (2018). A computationally driven analysis of the polyphenol-protein interactome. Scientific Reports, 8, 2232. https://doi.org/10.1038/s41598-018-20625-5.
Le Bourvellec, C., & Renard, C. M. G. C. (2012). Interactions between polyphenols and macromolecules: Quantification methods and mechanisms. Critical Reviews in Food Science and Nutrition, 52(3), 213–248. https://doi.org/10.1080/10408398.2010.499808.
Li, H., Guo, A., & Wang, H. (2008). Mechanisms of oxidative browning of wine. Food Chemistry, 108(1), 1–13. https://doi.org/10.1016/j.foodchem.2007.10.065.
Li, M., Ritzoulis, C., Du, Q., Liu, Y., Ding, Y., Liu, W., & Liu, J. (2021). Recent progress on protein-polyphenol complexes: Effect on stability and nutrients delivery of oil-in-water emulsion system. Frontiers in Nutrition, 8, 765589. https://doi.org/10.3389/fnut.2021.765589.
Li, X., Dai, T., Hu, P., Zhang, C., Chen, J., Liu, C., & Li, T. (2020). Characterization the non-covalent interactions between beta lactoglobulin and selected phenolic acids. Food Hydrocolloids, 105, 105761. https://doi.org/10.1016/j.foodhyd.2020.105761.
Li, Y., He, D., Li, B., Lund, M. N., Xing, Y., Wang, Y., … Li, L. (2021). Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends in Food Science and Technology, 110, 470–482. https://doi.org/10.1016/j.tifs.2021.02.009.
Liu, F., Ma, C., Gao, Y., & McClements, D. J. (2017). Food-grade covalent complexes and their application as nutraceutical delivery systems: A review. Comprehensive Reviews in Food Science and Food Safety, 16(1), 76–95. https://doi.org/10.1111/1541-4337.12229.
Liu, F., Sun, C., Yang, W., Yuan, F., & Gao, Y. (2015). Structural characterization and functional evaluation of lactoferrin – Polyphenol conjugates formed by free-radical graft copolymerization. RSC Advances, 5, 15641–15651. https://doi.org/10.1039/c4ra10802g.
Liu, J., Yong, H., Yao, X., Hu, H., Yun, D., & Xiao, L. (2019). Recent advances in phenolic-protein conjugates: Synthesis, characterization, biological activities and potential applications. RSC Advances, 9, 35825–35840. https://doi.org/10.1039/c9ra07808h.
Liu, L., Gao, K., Wang, Z., Lin, X., Huang, J., Wu, X., … Wu, H. (2018). Reducing the allergenic capacity of β -lactoglobulin by covalent conjugation with dietary polyphenols. Food Chemistry, 256, 427–434. https://doi.org/10.1016/j.foodchem.2018.02.158.
Liu, Z., & Hu, M. (2009). Natural polyphenol disposition via coupled metabolic pathways. Expert Opinion on Drug Metabolism & Toxicology, 3(3), 389–406. https://doi.org/10.1517/17425255.3.3.389.
Lou, Z., Wang, H., Zhu, S., Ma, C., & Wang, Z. (2011). Antibacterial activity and mechanism of action of chlorogenic acid. Journal of Food Science, 76(6), 398–403. https://doi.org/10.1111/j.1750-3841.2011.02213.x.
Lund, M. N., & Ray, C. A. (2017). Control of maillard reactions in foods: Strategies and chemical mechanisms. Journal of Agricultural and Food Chemistry, 65(23), 4537–4552. https://doi.org/10.1021/acs.jafc.7b00882.
Małecki, J., Muszyński, S., Sołowiej, B., & B.J.Sources (2021). Proteins in food systems— Bionanomaterials, conventional and unconventional sources, functional properties, and development opportunities. Polymers (Basel), 13(15), 2506. https://doi.org/10.3390/polym13152506.
Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727.
Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2012). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602.
Minatel, I. O., Borges, C. V., Ferreira, M. I., Gomez, H. A. G., Chen, C.-Y. O., & Lima, G. P. P. (2017). Phenolic compounds: Functional properties, impact of processing and bioavailability. Phenolic Compounds - Biological Activity.https://doi.org/10.5772/66368.
Mohammadi, F., & Moeeni, M. (2015). Study on the interactions of trans-resveratrol and curcumin with bovine α-lactalbumin by spectroscopic analysis and molecular docking. Materials Science & Engineering C-Materials for Biological Applications, 50, 358–366. https://doi.org/10.1016/j.msec.2015.02.007.
Mori, T., Ishii, T., Akagawa, M., Nakamura, Y., & Nakayama, T. (2010). Covalent binding of tea catechins to protein thiols: The relationship between stability and electrophilic reactivity. Bioscience, Biotechnology and Biochemistry, 74(12), 2451–2456. https://doi.org/10.1271/bbb.100509.
Murray, N. J., Williamson, M. P., Lilley, T. H., & Haslam, E. (1994). Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H-NMR spectroscopy. European Journal of Biochemistry, 219(3), 923–935. https://doi.org/10.1111/j.1432-1033.1994.tb18574.x.
Oh, H. I., Hoff, J. E., Armstrong, G. S., & Haff, L. A. (1980). Hydrophobic interaction in tannin-protein complexes. Journal of Agricultural and Food Chemistry, 28(2), 394–398. https://doi.org/10.1021/jf60228a020.
Ozdal, T., Capanoglu, E., & Altay, F. (2013). A review on protein-phenolic interactions and associated changes. Food Research International, 51(2), 954–970. https://doi.org/10.1016/j.foodres.2013.02.009.
Penalva, R., Esparza, I., Larraneta, E., Gamazo, C., & Irache, J. M. (2015). Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. Journal of Agricultural and Food Chemistry, 63(23), 5603–5611. https://doi.org/10.1021/jf505694e.
Petsko, G. A., & Yates, J. R. (2011). Analyzing molecular interactions. Current Protocols in Bioinformatics.https://doi.org/10.1002/0471250953.bi0801s36.
Pianet, I., André, Y., Ducasse, M. A., Tarascou, I., Lartigue, J. C., Pinaud, N., … Laguerre, M. (2008). Modeling procyanidin self-association processes and understanding their micellar organization: A study by diffusion NMR and molecular mechanics. Langmuir, 24(19), 11027–11035. https://doi.org/10.1021/la8015904.
Poklar Ulrih, N. (2017). Analytical techniques for the study of polyphenol–protein interactions. Critical Reviews in Food Science and Nutrition, 57(10), 2144–2161. https://doi.org/10.1080/10408398.2015.1052040.
Prigent, S. V. E., Gruppen, H., Visser, A. J. W. G., van Koningsveld, G. A., de Jong, G. A. H., & Voragen, A. G. J. (2003). Effects of non-covalent interactions with 5-O-caffeoylquinic acid (chlorogenic acid) on the heat denaturation and solubility of globular proteins. Journal of Agricultural and Food Chemistry, 51(17), 5088–5095. https://doi.org/10.1021/jf021229w.
Rahnasto-rilla, M., Tyni, J., Huovinen, M., Ja, E., & Kulikowicz, T. (2018). Natural polyphenols as sirtuin 6 modulators. Scientific Reports, 8, 4163. https://doi.org/10.1038/s41598-018-22388-5.
Rai, S., Kureel, A. K., Dutta, P. K., & Mehrotra, G. K. (2018). Phenolic compounds based conjugates from dextran aldehyde and BSA: Preparation, characterization and evaluation of their anti-cancer efficacy for therapeutic applications. International Journal of Biological Macromolecules, 110, 425–436. https://doi.org/10.1016/j.ijbiomac.2017.11.049.
Raj, U., Kumar, H., & Varadwaj, P. K. (2017). Molecular docking and dynamics simulation study of flavonoids as BET bromodomain inhibitors. Journal of Biomolecular Structure and Dynamics, 35(11), 2351–2362. https://doi.org/10.1080/07391102.2016.1217276.
Rawel, H. M., Huschek, G., Sagu, S. T., & Homann, T. (2019). Cocoa bean proteins-characterization, changes and modifications due to ripening and post-harvest processing. Nutrients, 11(2), 428. https://doi.org/10.3390/nu11020428.
Rawel, H. M., & Rohn, S. (2010). Nature of hydroxycinnamate-protein interactions. Phytochemistry Reviews, 9(1), 93–109. https://doi.org/10.1007/s11101-009-9154-4.
Rocasalbas, G., Francesko, A., Touriño, S., Fernández-Francos, X., Guebitz, G. M., & Tzanov, T. (2013). Laccase-assisted formation of bioactive chitosan/gelatin hydrogel stabilized with plant polyphenols. Carbohydrate Polymers, 92(2), 989–996. https://doi.org/10.1016/j.carbpol.2012.10.045.
Rocha, B. A. M., Teixeira, C. S., Silva-filho, J. C., Nóbrega, R. B., Alencar, D. B., Nascimento, K. S., … Delatorre, P. (2015). Structural basis of ConM binding with resveratrol, an anti-inflammatory and antioxidant polyphenol. International Journal of Biological Macromolecules, 72, 1136–1142. https://doi.org/10.1016/j.ijbiomac.2014.08.031.
Roche, D. B., Brackenridge, D. A., & McGuffin, L. J. (2015). Proteins and their interacting partners: An introduction to protein-ligand binding site prediction methods. International Journal of Molecular Sciences, 16(12), 29829–29842. https://doi.org/10.3390/ijms161226202.
Rohn, S., Rawel, H. M., & Kroll, J. (2002). Inhibitory effects of plant phenols on the activity of selected enzymes. Journal of Agricultural and Food Chemistry, 50(12), 3566–3571. https://doi.org/10.1021/jf011714b.
Rohn, S., Rawel, H. M., & Kroll, J. (2004). Antioxidant activity of protein-bound quercetin. Journal of Agricultural and Food Chemistry, 52(15), 4725–4729. https://doi.org/10.1021/jf0496797.
Sahihi, M., Heidari-Koholi, Z., & Bordbar, A. K. (2012). The interaction of polyphenol flavonoids with -lactoglobulin: Molecular docking and molecular dynamics simulation studies. Journal of Macromolecular Science, Part B: Physics, 51(12), 2311–2323. https://doi.org/10.1080/00222348.2012.672854.
Samant, S. K., Singhal, R. S., Kulkarni, P. R., & Rege, D. V. (1993). Protein-polysaccharide interactions: A new approach in food formulations. International Journal of Food Science and Technology, 28(6), 547–562. https://doi.org/10.1111/j.1365-2621.1993.tb01306.x.
Sang, S., Lambert, J. D., Hong, J., Tian, S., Lee, M. J., Stark, R. E., … Yang, C. S. (2005). Synthesis and structure identification of thiol conjugates of (−)-epigallocatechin gallate and their urinary levels in mice. Chemical Research in Toxicology, 18(11), 1762–1769. https://doi.org/10.1021/tx050151l.
Scafuri, B., Marabotti, A., Carbone, V., Minasi, P., Dotolo, S., & Facchiano, A. (2016). A theoretical study on predicted protein targets of apple polyphenols and possible mechanisms of chemoprevention in colorectal cancer. Scientific Reports, 6, 32516. https://doi.org/10.1038/srep32516.
Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods, Part B, 18, 820–897. https://doi.org/10.1016/j.jff.2015.06.018.
Shahidi, F., & Chandrasekara, A. (2017). Interaction of phenolics and their association with dietary fiber: From plant to gut. Dietary Fiber Functionality in Food and Nutraceuticals, 21–44. https://doi.org/10.1002/9781119138105.ch2.
Silva, C., Correia-branco, A., Andrade, N., Ferreira, A. C., Soares, L., Sonveaux, P., … Martel, F. (2019). Selective pro-apoptotic and antimigratory effects of polyphenol complex catechin:lysine 1:2 in breast, pancreatic and colorectal cancer cell lines. European Journal of Pharmacology, 859, 172533. https://doi.org/10.1016/j.ejphar.2019.172533.
Thomas, N. S., George, K., & Anand, A. A. (2018). Anticancer mechanism of troxerutin via targeting Nrf2 and NF-κB signalling pathways in hepatocarcinoma cell line. Toxicology In Vitro, 54, 317–329. https://doi.org/10.1016/j.tiv.2018.10.018.
Vardhan, P. V., & Shukla, L. I. (2017). Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production. International Journal of Radiation Biology, 93(9), 967–979. https://doi.org/10.1080/09553002.2017.1344788.
Von Staszewski, M., Jara, F. L., Ruiz, A. L. T. G., Jagus, R. J., Carvalho, J. E., & Pilosof, A. M. R. (2012). Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity. Journal of Functional Foods, 4(4), 800–809. https://doi.org/10.1016/j.jff.2012.05.008.
Walle, T., Browning, A. M., Steed, L. L., Reed, S. G., & Walle, U. K. (2005). Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. Journal of Nutrition, 135(1), 48–52. https://doi.org/10.1093/jn/135.1.48.
Wu, H., Zhuo, L., He, Q., Liao, X., & Shi, B. (2009). Heterogeneous hydrogenation of nitrobenzenes over recyclable Pd(0) nanoparticle catalysts stabilized by polyphenol-grafted collagen fibers. Applied Catalysis A: General, 366(1), 44–56. https://doi.org/10.1016/j.apcata.2009.06.024.
Xie, Y., Xiao, J., Kai, G., & Chen, X. (2012). Glycation of plasma proteins in type II diabetes lowers the non-covalent interaction affinities for dietary polyphenols. Integrative Biology, 4(5), 502–507. https://doi.org/10.1039/c2ib00185c.
Xu, L., Li, W., Chen, Z., Guo, Q., Wang, C., Santhanam, R. K., & Chen, H. (2019). Inhibitory effect of epigallocatechin-3-O-gallate on α-glucosidase and its hypoglycemic effect via targeting PI3K/AKT signaling pathway in L6 skeletal muscle cells. International Journal of Biological Macromolecules, 125, 605–611. https://doi.org/10.1016/j.ijbiomac.2018.12.064.
Yi, J., Zhang, Y., Liang, R., Zhong, F., & Ma, J. (2015). Beta-carotene chemical stability in nanoemulsions was improved by stabilized with beta-lactoglobulin-catechin conjugates through free radical method. Journal of Agricultural and Food Chemistry, 63(1), 297–303. https://doi.org/10.1021/jf5056024.
Yin, J., Hedegaard, R. V., Skibsted, L. H., & Andersen, M. L. (2014). Epicatechin and epigallocatechin gallate inhibit formation of intermediary radicals during heating of lysine and glucose. Food Chemistry, 146, 48–55. https://doi.org/10.1016/j.foodchem.2013.09.032.
You, J., Luo, Y., & Wu, J. (2014). Conjugation of ovotransferrin with catechin shows improved antioxidant activity. Journal of Agricultural and Food Chemistry, 62(12), 2581–2587. https://doi.org/10.1021/jf405635q.
Youn, K., & Jun, M. (2019). Biological evaluation and docking analysis of potent BACE1 inhibitors from Boesenbergia rotunda. Nutrients, 11(3), 662. https://doi.org/10.3390/nu11030662.
Yu, Q., Fan, L., & Duan, Z. (2019). Five individual polyphenols as tyrosinase inhibitors : Inhibitory activity, synergistic effect, action mechanism, and molecular docking. Food Chemistry. https://doi.org/10.1016/j.foodchem.2019.05.184.
Yu, X., Cai, X., Luo, L., Wang, J., Ma, M., Wang, M., & Zeng, L. (2020). Influence of tea polyphenol and bovine serum albumin on tea cream formation by multiple spectroscopy methods and molecular docking. Food Chemistry, 333, 127432. https://doi.org/10.1016/j.foodchem.2020.127432.
Zanchi, D., Vernhet, A., Poncet-Legrand, C., Cartalade, D., Tribet, C., Schweins, R., & Cabane, B. (2007). Colloidal dispersions of tannins in water-ethanol solutions. Langmuir, 23(20), 9949–9959. https://doi.org/10.1021/la700694b.
Zeng, H. J., Sun, D. Q., Chu, S. H., Zhang, J. J., Hu, G. Z., & Yang, R. (2020). Inhibitory effects of four anthraquinones on tyrosinase activity: Insight from spectroscopic analysis and molecular docking. International Journal of Biological Macromolecules, 160, 153–163. https://doi.org/10.1016/j.ijbiomac.2020.05.193.
Zhang, Y., & Zhong, Q. (2012). Binding between bixin and whey protein at pH 7.4 studied by spectroscopy and isothermal titration calorimetry. Journal of Agricultural and Food Chemistry, 60(7), 1880–1886. https://doi.org/10.1021/jf2050262.
Zhao, J., Fu, Y., Yasvoina, M., Shao, P., Hitt, B., O’Connor, T., … Vassar, R. (2007). β-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: Implications for Alzheimer’s disease pathogenesis. Journal of Neuroscience, 27(14), 3639–3649. https://doi.org/10.1523/JNEUROSCI.4396-06.2007.