Phenol content and antioxidant activity of green, yellow and black tea leaves

Mirela Kopjar1, Maja Tadić1, Vlasta Piližota1
1Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia

Tóm tắt

Green, black and yellow tea leaves are rich in phenolic compounds that are known for their antioxidant activity thus beneficial effect on human health. In practice, different methods are used to determine antioxidant activity. The objective of this study was to determine content of phenols, flavonoids and tannins, as well as antioxidant activity of tea leaves. Green, yellow and black tea leaves (intact and pulverised leaves) were used for extraction by methanol or acidified methanol. Spectrophotometric methods were used for determination of selected parameters. Antioxidant activity was determined in extracts and pulverised tea leaves by application of 2,2-diphenyl-1-picrilhydrazyl (DPPH) and 2,2′azinobis-(3-ethylbenzthiazoline-6-sulphonic acid (ABTS) free radicals. For determination of antioxidant activity of the pulverised leaves, ‘QUENCHER’ method was used. The method is based on the direct treatment of dry sample with free radicals. Extracts obtained by extraction of pulverised tea leaves with acidified methanol had the highest phenolic content (3.823, 4.226 and 6.829 g/kg for green, black and yellow tea, respectively). In methanol extracts, phenol content decreased in order yellow > green > black tea and, in acidified methanol extracts, yellow > black > green tea, regardless of particle size of tea leaves for extraction. Flavonoid and tannin contents followed the same tendency as phenol content. The highest antioxidant activity had acidified methanol extracts of pulverised tea leaves, regardless of used method (DPPH and ABTS). Results of antioxidant activity obtained with ‘QUENCHER’ method were compared with results of acidified methanol extracts. Green and yellow tea had higher antioxidant activity when ‘QUENCHER’ method was used in contrast to the black tea where higher antioxidant activity was determined in extract. Particle size and extraction solvent had high influence on total phenolic compounds, total flavonoid and tannin content as well as on antioxidant activity. Also, antioxidant activity of samples highly depended on used free radicals and sample preparation prior their application.

Tài liệu tham khảo

Pellegrini N, Serafini M, Colombi B, Del Río D, Salvatore S, Bianchi M, Brighenti F (2003) Total antioxidant capacity of plant foods, beverages, and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133(9):2812–2819 Pérez-Jiménez J, Arranz S, Tabernero M, Diaz-Rubio ME, Serrano J, Gońi I, Saura-Calixto F (2008) Update methodology to determine antioxidant capacity in plant foods, oils and beverages: extraction, measurement and expression of results. Food Res Int 41(3):274–285 Gökmen V, Serpen A, Fogliano V (2009) Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’approach. Trends Food Sci Technol 20(6–7):278–288 Serpen A, Capuano E, Fogliano V, Gökmen V (2007) A new procedure to measure the antioxidant activity of insoluble food components. J Agric Food Chem 55(19):7676–7681 Serpen A, Gökmen V, Fogliano V (2012) Solvent effects on total antioxidant capacity of foods measured by direct QUENCHER procedure. J Food Compos Anal 26(1–2):52–57 Borse BB, Kumar HV, Rao LJM (2007) Radical scavenging conserves from unused fresh green tea leaves. J Agric Food Chem 55(5):1750–1754 Ough CS, Amarine MA (1998) Phenolic compounds. In: Methods for analysis of musts and wines. John Wiley & Sons, Inc., New York Makris DP, Boskou G, Andrikopoulo NK (2007) Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Compos Anal 20(2):125–132 Nakamura Y, Tsui S, Tonogai Y (2003) Analysis of proanthocyanidins in grape seed extracts, health foods, and grape seed oils. J Health Sci 49(1):45–54 Arnao MB, Cano A, Acosta M (2001) The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73(2):239–244 Robbins R (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51(10):2866–2887 Naczk M, Shahidi F (2004) Extraction and analysis of phenolics in food. J Chromatogr A 1054(1–2):95–111 Bucić-Kojić A, Planinić M, Tomas S, Bilić M, Velić D (2007) Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. J Food Eng 81(1):236–242 Franco D, Pinelo M, Sineiro J, Nunez MJ (2007) Processing of Rosa rubiginosa: extraction of oil and antioxidant substances. Bioresour Technol 98(18):3506–3512 Gião MS, Pereira CI, Fonesca SC, Pintado ME, Malcata FX (2009) Effects of particle size upon the extent of extraction of antioxidant power from plants agrimonia eupatoria, salvia sp and Satureja Montana. Food Chem 117(3):412–416 Ramdani D, Chaudhry AS, Seal CJ (2013) Chemical composition, plant secondary metabolites, and minerals of green and black teas and the effect of different Tea-to-water ratios during their extraction on the composition of their spent leaves as potential additives for ruminants. J Agric Food Chem 61(20):4961–4967 Anesini C, Ferraro GE, Filip R (2008) Total polyphenol content and antioxidant capacity of commercially available Tea (camellia sinensis) in Argentina. J Agric Food Chem 56(19):9225–9229 Kazazić SP (2004) The antioxidant and antiradical activity of flavonoids (in Croatian). Arhiva Higijene Rada Toksikologije 55:279–290 Rice-Evans CA, Miller NY, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Rad Res 22(4):375–382 Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationship. J Nutr Biochem 13(10):572–584 Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphmolibdic-phosphotonutric acid reagents. Am J Enol Vitic 16(3):144–158 Campos AM, Lissi EA (1997) Kinetics of the reaction between 2,2′-azibobis(3-ethylbenzozolin-6-sulfonic acid) (ABTS) derived radical cation and phenols. Int J Chem Kinet 29(3):219–224 Arts MJTJ, Dallinga JS, Voss HP, Haenen GRMM, Bast A (2003) A critical appraisal of the use of antioxidant capacity (TEAC) assay in defining optimal antioxidant structures. Food Chem 80(3):409–414 Roginsky V, Lissi EA (2005) Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 92(2):235–254 Yokozawa T, Chen P, Dong E, Tanaka T, Nonaka GI, Nishioka I (1998) Study on the inhibitory effects of tannins and flavonoids against 1,1-diphenyl-2-picrylhydrazyl radical. Biochem Pharm 56(2):213–222 Pastoriza S, Delgado-Andrade C, Haro A, Rufián-Henares JA (2011) A physiologic approach to test the global antioxidant response of foods. The GAR method. Food Chem 129(4):1926–1932 Delgado-Andrade C, Conde-Aguilera JA, Haro A, Pastoriza S, Rufián-Henares JA (2010) A combined procedure to evaluate the global antioxidant response of bread. J Cereal Sci 52(2):239–246