Phaseolus vulgaris L. Leaves Increase Short-Chain Fatty Acid (SCFA) Production, Ameliorating Early Metabolic Alterations

Plant Foods for Human Nutrition - Tập 77 - Trang 421-426 - 2022
Adriana Araceli Becerril-Campos1, Perla Viridiana Ocampo-Anguiano1, Candelario Mondragón-Jacobo2, Konisgmar Escobar-García3, Mariela Camacho-Barrón4, Miriam Aracely Anaya-Loyola4, Ana Angélica Feregrino-Perez5, Teresa García-Gasca1, Santiaga Marisela Ahumada-Solórzano1
1Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales (FCN), Universidad Autónoma de Querétaro (UAQ), Querétaro, México
2Horticultura y Producción Agrícola, FCN, UAQ, Querétaro, México
3Laboratorio de Nutrición Animal, FCN, UAQ. Campus Juriquilla, Querétaro, México
4Laboratorio de Nutrición Humana, FCN, UAQ. Campus Juriquilla, Querétaro, México
5Laboratorio Metabolitos Secundarios y Nutraceúticos, Facultad de Ingeniería, UAQ, Querétaro, México

Tóm tắt

High-fat/high-fructose diets promote early metabolic disorders in weight and lipid and glucose metabolism. Bioactive compounds such as polyphenols and fiber present in plant-based food prevent the development of metabolic disorders. The objective of the present study was to evaluate the effect of Phaseolus vulgaris L. Flor de Mayo Eugenia (FME) bean leaves on early metabolic alterations in male Wistar rats fed a high-fat/high-fructose diet. After proximate and chemical analysis of FME bean leaves, thirty-six male Wistar rats (ethical approval 06FCN2019 and 77FCN2019) were randomly assigned to one of four groups: 1) standard diet (S) fed with Rodent Laboratory Chow 5001®; 2) standard diet + 10% dry FME bean leaves (SBL); 3) high-fat (lard) and high-fructose diet (H); and 4) high-fat/high-fructose diet + 10% dry FME bean leaves (HBL). The study was carried out for six weeks. Group H exhibited early metabolic alterations compared to Group S: final weight gain (↑15%), abdominal fat accumulation (waist circumference, ↑11%), triglycerides (↑30%), glucose (↑16%), insulin resistance (HOMA-IR, ↑32%), and fecal triglycerides (↑284%) and decreased total short-chain fatty acids (SCFAs, ↓17%). FME bean leave supplementation (HBL) prevented body weight gain (↓12%), abdominal fat accumulation (waist circumference, ↓10%), and early insulin resistance (glucose area under the curve, ↓6%) compared to Group H. The supplementary bean leave diet increased SCFA production (↑54%), most likely mediated by the fiber and polyphenols present in the leaves. Therefore, bean leaves are a low-cost alternative for human nutritional care and prevention of early metabolic alterations.

Tài liệu tham khảo

Pahua-Ramos ME, Garduño-Siciliano L, Dorantes-Alvarez L, Chamorro-Cevallos G, Herrera-Martínez J, Osorio-Esquivel O, Ortiz-Moreno A (2014) Reduced-calorie avocado paste attenuates metabolic factors associated with a hypercholesterolemic-high fructose diet in rats. Plant Foods Hum Nutr 69(1):18–24. https://doi.org/10.1007/s11130-013-0395-4 Hernández MAG, Canfora EE, Jocken JWE, Blaak EE (2019) The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11(8):1943. https://doi.org/10.3390/NU11081943 De Vadder F, Kovatcheva-Datchary P, Goncalves D, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156(1–2):84–96. https://doi.org/10.1016/j.cell.2013.12.016 Martínez-Zavala M, Mora-Avilés MA, Anaya-Loyola MA, Guzmán-Maldonado H, Aguilera-Barreyro A, Blanco-Labra A, García-Gasca T (2016) Common bean leaves as a source of dietary iron: Functional test in an iron-deficient rat model. Plant Foods Hum Nutr 71(3):259–264. https://doi.org/10.1007/s11130-016-0554-5 Ramírez-Venegas G, De Ita-Pérez DL, Díaz-Muñoz M, Méndez I, García-Gasca T, Ahumada-Solórzano M, Zambrano-Estrada X, Vázquez-Martínez O, Guzmán-Maldonado H, Luna-Moreno D (2021) Supplementation with Phaseolus vulgaris leaves improves metabolic alterations induced by high-fat/fructose diet in rats under time-restricted feeding. Plant Foods Hum Nutr 76(3):297–303. https://doi.org/10.1007/S11130-021-00904-9 Linares E, Bye R, Ortega N, Arce AE (2017) Quelites: sabores y saberes, del sureste del Estado de México, Primera. Universidad Nacional Autónoma de Mexico, Ciudad de México. https://doi.org/10.22201/ib.9786073016667e.2019 Gerbaix M, Metz L, Ringot E, Courteix D (2010) Visceral fat mass determination in rodent: Validation of dual-energy x-ray absorptiometry and anthropometric techniques in fat and lean rats. Lipids Health Dis 9:140. https://doi.org/10.1186/1476-511X-9-140 Buettner R, Schölmerich J, Bollheimer LC (2007) High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity 15(4):798–808. https://doi.org/10.1038/OBY.2007.608 Ello-Martin JA, Ledikwe JH, Rolls BJ (2005) The influence of food portion size and energy density on energy intake: implications for weight management. The Am J Clin Nutr 82(1 Suppl):236S–41S. https://doi.org/10.1093/AJCN/82.1.236S Becerril Campos AA, Luna Moreno AD, GarcíaGasca MTdeJ, Ahumada Solórzano SM (2018) Prevención del riesgo metabólico en un modelo in vivo con el consumo de quínoa roja (Chenopodium Berlandieri Spp. Nuttalliae) y hoja de frijol (Phaseolus vulgaris). Revista de la Conferencia Científica Anual sobre Síndrome Metabólico 4:13 Adeli K, Xiao C, Higgins V et al (2021) Diabetic dyslipidaemia. In: Ridgway ND, McLeod RS (eds) Biochemistry of lipids, lipoproteins and membranes, 7th edn. Elsevier, pp 667–6935 Zhu X, Bian H, Wang L, Sun X, Xu X, Yan H, Xia M, Chang X, Lu Y, Li Y, Xia P, Li X, Gao X (2019) Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic Biol Med 141:192–204. https://doi.org/10.1016/J.FREERADBIOMED.2019.06.019 Engin AB (2017) What is lipotoxicity? In: Advances in experimental medicine and biology. pp 197–220 Ghorbani A, Rashidi R, Shafiee-Nick R (2019) Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomed Pharmacother 111:947–957. https://doi.org/10.1016/J.BIOPHA.2018.12.127 Liu JL, Segovia I, Yuan XL, Gao ZH (2020) Controversial roles of gut microbiota-derived short-chain fatty acids (SCFAs) on pancreatic β-cell growth and insulin secretion. Int J Mol Sci 21(3):910. https://doi.org/10.3390/IJMS21030910 Sakaguchi K, Takeda K, Maeda M, Ogawa W, Sato T, Okada O, Ohnishi Y, Nakajima H, Kashiwagi A (2016) Glucose area under the curve during oral glucose tolerance test as an index of glucose intolerance. Diabetology Int 7(1):53–58. https://doi.org/10.1007/s13340-015-0212-4 Hosseinpour-Niazi S, Mirmiran P, Sohrab G, Hosseini-Esfahani F, Azizi F (2011) Inverse association between fruit, legume, and cereal fiber and the risk of metabolic syndrome: Tehran Lipid and Glucose Study. Diabetes Res Clin Pract 94(2):276–283. https://doi.org/10.1016/j.diabres.2011.07.020 McRorie JW, McKeown NM (2017) Understanding the physics of functional fibers in the gastrointestinal tract: An evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J Acad Nutr Diet 117(2):251–264. https://doi.org/10.1016/j.jand.2016.09.021 Sulistyowati E, Handayani D, Soeharto S, Rudijanto A (2021) A high fat-fructose diet lowers the cecal digesta weight and short chain fatty acid level of Sprawe Dawley rat model. Turk J Med Sci 52(1). https://doi.org/10.3906/sag-1911-14 Parkar SG, Trower TM, Stevenson DE (2013) Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe 23:12–9. https://doi.org/10.1016/J.ANAEROBE.2013.07.009 Edwards CA, Havlik J, Cong W, Mullen W, Preston T, Morrison DJ, Combet E (2017) Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota. Nutr Bull 42(4):356–360. https://doi.org/10.1111/nbu.12296 Mateos-Maces L, Chávez-Servia JL, Vera-Guzmán AM, Aquino-Bolaños EN, Alba-Jiménez JE, Villagómez-González BB (2020) Edible leafy plants from Mexico as sources of antioxidant compounds, and their nutritional, nutraceutical and antimicrobial potential: A review. Antioxidants 9(6):541. https://doi.org/10.3390/antiox9060541