Phase relationship between hippocampal place units and the EEG theta rhythm

Hippocampus - Tập 3 Số 3 - Trang 317-330 - 1993
John O’Keefe1, Michael Recce1
1Department of Anatomy and Developmental Biology, University College London, London U.K.

Tóm tắt

Abstract

Many complex spike cells in the hippocampus of the freely moving rat have as their primary correlate the animal's location in an environment (place cells). In contrast, the hippocampal electroer cephalograph theta pattern of rhythmical waves (7–12 Hz) is better correlated with a class of movements that change the rat's location in an environment. During movement through the place field, the complex spike cells often fire in a bursting pattern with an interburst frequency in the same range as the concurrent electroencephalograph theta. The present study examined the phase of the theta wave at which the place cells fired. It was found that firing consistently began at a particular phase as the rat entered the field but then shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This precession of the phase ranged from 100° to 355° in different cells. The effect appeared to be due to the fact that individual cells had a higher interburst rate than the theta frequency. The phase was highly correlated with spatial location and less well correlated with temporal aspects of behavior, such as the time after place field entry. These results have implications for several aspects of hippocampal function. First, by using the phase relationship as well as the firing rate, place cells can improve the accuracy of place coding. Second, the characteristics of the phase shift constrain the models that define the construction of place fields. Third, the results restrict the temporal and spatial circumstances under which synapses in the hippocampus could be modified.

Từ khóa


Tài liệu tham khảo

10.1152/jn.1983.50.5.1197

10.1016/0301-0082(86)90019-5

10.1016/0165-0173(83)90037-1

10.1016/0166-2236(87)90175-5

Eichenbaum H, 1986, Cue‐sampling and goal‐approach correlates of hippocampal unit activity in rats performing an odor discrimination task, J Neurosci, 7, 716, 10.1523/JNEUROSCI.07-03-00716.1987

10.1016/0014-4886(75)90213-7

10.1007/BF00236028

Hoppensteadt FC, 1986, An introduction to the mathematics of neurons

10.1016/0006-8993(89)90007-3

10.1126/science.3059497

10.1016/0165-0270(83)90097-3

10.1007/BF00237147

10.1523/JNEUROSCI.07-07-01935.1987

10.1002/hipo.450010306

10.1016/0014-4886(76)90055-8

O'Keefe J, 1985, Brain and mind, 59

10.1007/BF00239813

10.3758/BF03332854

10.1016/0006-8993(71)90358-1

O'Keefe J, 1978, The hippocampus as a cognitive map

10.1007/BF00255230

10.1016/0014-4886(78)90096-1

10.1002/hipo.450010206

10.1016/0006-8993(88)91499-0

10.1016/0014-4886(73)90290-2

Recce ML, 1989, The tetrode: a new technique for multiunit extracellular recording, Soc Neurosci Abstr, 15, 1250

Recce ML, 1991, Place fields of single hippocampal cells are smaller and more spatially localised than you thought, Soc Neurosci Abstr, 17, 484

Sinclair BR, 1982, Theta‐cells in CA1 and dentate layers of hippocampal formation: relations to slow‐wave activity and motor behavior in the freely‐moving rabbit, J Neurophysiol, 48, 1214, 10.1152/jn.1982.48.5.1214

10.1038/339215a0

10.1126/science.2646715

10.1016/0013-4694(69)90092-3

10.1016/S0091-6773(73)80041-0