Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình pha-lĩnh và phân tích hiện tượng nứt phụ thuộc vào tốc độ ở biến dạng hữu hạn
Tóm tắt
Sự gãy vỡ của các vật liệu có hành vi cơ học phụ thuộc vào tốc độ, chẳng hạn như polymer, là một quá trình rất phức tạp. Để mô hình hóa một cách đầy đủ, sự kết hợp giữa độ cứng phụ thuộc vào tốc độ, các cơ chế tiêu tán hiện có trong vật liệu khối và lực kích thích nứt cần phải được xem xét một cách phù hợp. Ngoài ra, lực kháng lại sự phát triển của nứt có thể phụ thuộc vào tốc độ biến dạng. Trong nghiên cứu này, một mô hình pha-lĩnh năng lượng của sự nứt phụ thuộc vào tốc độ tại biến dạng hữu hạn được trình bày. Đối với biến dạng của vật liệu khối, một công thức về độ nhớt hữu hạn được áp dụng với mật độ năng lượng biến dạng dạng Ogden được giả định. Công thức thống nhất này cho phép nghiên cứu các biểu thức khác nhau cho lực kích thích nứt. Hơn nữa, một độ dẻo có thể phụ thuộc vào tốc độ được đưa vào. Mô hình này được hiệu chỉnh bằng cách sử dụng kết quả thí nghiệm từ tài liệu cho một elastomer và các dự đoán được xác thực cả về chất lượng lẫn số lượng so với dữ liệu thí nghiệm. Năng lực dự đoán của mô hình được nghiên cứu cho các tải trọng đơn điệu cũng như sự gãy vỡ do creep. Các mô hình nứt đối xứng và không đối xứng được thảo luận và ảnh hưởng của một đóng góp lực kích thích nứt tiêu tán được phân tích. Kết quả cho thấy rằng, khác với sự gãy vỡ dẻo của kim loại, lực kích thích như vậy không cần thiết cho một mô phỏng đầy đủ các đường nứt có thể quan sát được trong thí nghiệm và không có lợi cho việc mô tả sự hỏng hóc trong polymer cao su nhớt. Hơn nữa, ảnh hưởng của độ dẻo phụ thuộc vào tốc độ được thảo luận thông qua một nghiên cứu số. Từ góc độ hiện tượng học, kết quả cho thấy rằng sự phụ thuộc vào tốc độ của lực kháng lại sự phát triển của nứt có thể là một thành phần quan trọng cho mô hình khi cần mô tả các hiệu ứng cụ thể như chuyển tiếp từ giòn sang dẻo phụ thuộc vào tốc độ.
Từ khóa
#nứt phụ thuộc vào tốc độ #mô hình pha-lĩnh #vật liệu polymer #biến dạng hữu hạn #độ dẻoTài liệu tham khảo
Grellmann W, Seidler S, Altstädt V (eds) (2015) 3rd edn. Hanser, München
Gent AN (2012) Engineering with rubber: how to design rubber components, 3rd edn. Carl Hanser Verlag, München. https://doi.org/10.3139/9783446428713
Goh S, Charalambides M, Williams J (2005) On the mechanics of wire cutting of cheese. Eng Fract Mech 72(6):931. https://doi.org/10.1016/j.engfracmech.2004.07.015
van Vliet T, Luyten H, Walstra P (2005) Time dependent fracture behaviour of food. In: Food colloids and polymers. Elsevier, Amsterdam, pp 175–190. https://doi.org/10.1533/9781845698270.175
Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44(9):1267. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
Moës N, Dolbow JE, Sukumar N (2017) Extended finite element methods. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, 2nd edn. Wiley, Chichester, pp 1–21. https://doi.org/10.1002/9781119176817.ecm2111
Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319. https://doi.org/10.1016/S0022-5096(98)00034-9
Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc A Math Phys Eng Sci 221(582–593):163. https://doi.org/10.1098/rsta.1921.0006
Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797. https://doi.org/10.1016/S0022-5096(99)00028-9
Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91(1–3):5. https://doi.org/10.1007/s10659-007-9107-3
Carrara P, Ambati M, Alessi R, De Lorenzis L (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Comput Methods Appl Mech Eng 361:112731. https://doi.org/10.1016/j.cma.2019.112731
Seiler M, Linse T, Hantschke P, Kästner M (2020) An efficient phase-field model for fatigue fracture in ductile materials. Eng Fract Mech 224:106807. https://doi.org/10.1016/j.engfracmech.2019.106807
Schreiber C, Kuhn C, Müller R, Zohdi T (2020) A phase field modeling approach of cyclic fatigue crack growth. Int J Fract 225(1):89. https://doi.org/10.1007/s10704-020-00468-w
Kumar A, Francfort GA, Lopez-Pamies O (2018) Fracture and healing of elastomers: a phase-transition theory and numerical implementation. J Mech Phys Solids 112:523. https://doi.org/10.1016/j.jmps.2018.01.003
Kumar A, Lopez-Pamies O (2021) The poker-chip experiments of Gent and Lindley (1959) explained. J Mech Phys Solids 150:104359. https://doi.org/10.1016/j.jmps.2021.104359
Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765. https://doi.org/10.1016/j.cma.2010.04.011
Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273. https://doi.org/10.1002/nme.2861
Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77(18):3625. https://doi.org/10.1016/j.engfracmech.2010.08.009
Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209. https://doi.org/10.1016/j.jmps.2009.04.011
Steinke C, Kaliske M (2019) A phase-field crack model based on directional stress decomposition. Comput Mech 63(5):1019. https://doi.org/10.1007/s00466-018-1635-0
Weinberg K, Hesch C (2017) A high-order finite deformation phase-field approach to fracture. Contin Mech Thermodyn 29(4):935. https://doi.org/10.1007/s00161-015-0440-7
Mang K, Fehse A, Kröger NH, Wick T (2021) A mixed phase-field fracture model for crack propagation in punctured EPDM strips. Theor Appl Fract Mech 115:103076. https://doi.org/10.1016/j.tafmec.2021.103076
Swamynathan S, Jobst S, Kienle D, Keip MA (2022) Phase-field modeling of fracture in strain-hardening elastomers: variational formulation, multiaxial experiments and validation. Eng Fract Mech 265:108303. https://doi.org/10.1016/j.engfracmech.2022.108303
Goswami S, Anitescu C, Rabczuk T (2020) Adaptive fourth-order phase field analysis using deep energy minimization. Theor Appl Fract Mech 107:102527. https://doi.org/10.1016/j.tafmec.2020.102527
Feng Y, Wang Q, Wu D, Luo Z, Chen X, Zhang T, Gao W (2021) Machine learning aided phase field method for fracture mechanics. Int J Eng Sci 169:103587. https://doi.org/10.1016/j.ijengsci.2021.103587
Aldakheel F, Satari R, Wriggers P (2021) Feed-forward neural networks for failure mechanics problems. Appl Sci 11(14):6483. https://doi.org/10.3390/app11146483
Carrara P, De Lorenzis L, Stainier L, Ortiz M (2020) Data-driven fracture mechanics. Comput Methods Appl Mech Eng 372:113390. https://doi.org/10.1016/j.cma.2020.113390
Carrara P, Ortiz M, De Lorenzis L (2021) Data-driven rate-dependent fracture mechanics. J Mech Phys Solids 155:104559. https://doi.org/10.1016/j.jmps.2021.104559
Alessi R, Marigo JJ, Maurini C, Vidoli S (2018) Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: one-dimensional examples. Int J Mech Sci 149:559. https://doi.org/10.1016/j.ijmecsci.2017.05.047
Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55(5):1017. https://doi.org/10.1007/s00466-015-1151-4
Miehe C, Hofacker M, Schänzel LM, Aldakheel F (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic–plastic solids. Comput Methods Appl Mech Eng 294:486. https://doi.org/10.1016/j.cma.2014.11.017
Schänzel LM (2015) Phase field modeling of fracture in rubbery and glassy polymers at finite thermo-viscoelastic deformations. Ph.D. thesis, Universität Stuttgart, Stuttgart
Ambati M, Kruse R, De Lorenzis L (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57(1):149. https://doi.org/10.1007/s00466-015-1225-3
Yin B, Kaliske M (2020) Fracture simulation of viscoelastic polymers by the phase-field method. Comput Methods Appl Mech Eng 366:113068. https://doi.org/10.1016/j.cma.2020.113068
Kuhn C, Müller R (2016) A discussion of fracture mechanisms in heterogeneous materials by means of configurational forces in a phase field fracture model. Comput Methods Appl Mech Eng 312:95. https://doi.org/10.1016/j.cma.2016.04.027
Miehe C, Aldakheel F, Raina A (2016) Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int J Plast 84:1. https://doi.org/10.1016/j.ijplas.2016.04.011
Arriaga M, Waisman H (2017) Combined stability analysis of phase-field dynamic fracture and shear band localization. Int J Plast 96:81. https://doi.org/10.1016/j.ijplas.2017.04.018
McAuliffe C, Waisman H (2015) A unified model for metal failure capturing shear banding and fracture. Int J Plast 65:131. https://doi.org/10.1016/j.ijplas.2014.08.016
Borden MJ, Hughes TJ, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130. https://doi.org/10.1016/j.cma.2016.09.005
Shen F, Kang G, Lam YC, Liu Y, Zhou K (2019) Thermo-elastic-viscoplastic-damage model for self-heating and mechanical behavior of thermoplastic polymers. Int J Plast 121:227. https://doi.org/10.1016/j.ijplas.2019.06.003
Liu Z, Roggel J, Juhre D (2018) Phase-field modelling of fracture in viscoelastic solids. Procedia Struct Integr 13:781. https://doi.org/10.1016/j.prostr.2018.12.129
Loew PJ, Peters B, Beex LA (2019) Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification. J Mech Phys Solids 127:266. https://doi.org/10.1016/j.jmps.2019.03.022
Loew PJ, Peters B, Beex LA (2020) Fatigue phase-field damage modeling of rubber using viscous dissipation: crack nucleation and propagation. Mech Mater 142:103282. https://doi.org/10.1016/j.mechmat.2019.103282
Holzapfel G (1996) On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int J Numer Methods Eng 39:3903
Yin B, Kaliske M (2020) Fracture simulation of viscoelastic polymers by the phase-field method. Comput Mech 65:293. https://doi.org/10.1007/s00466-019-01769-1
Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35(26–27):3455. https://doi.org/10.1016/S0020-7683(97)00217-5
Brighenti R, Rabczuk T, Zhuang X (2021) Phase field approach for simulating failure of viscoelastic elastomers. Eur J Mech A Solids 85:104092. https://doi.org/10.1016/j.euromechsol.2020.104092
Arash B, Exner W, Rolfes R (2021) A finite deformation phase-field fracture model for the thermo-viscoelastic analysis of polymer nanocomposites. Comput Methods Appl Mech Eng 381:113821. https://doi.org/10.1016/j.cma.2021.113821
Dammaß F, Ambati M, Kästner M (2021) Phase-field modelling and simulation of fracture in viscoelastic materials. PAMM 21(1):e202100108. https://doi.org/10.1002/pamm.202100108
Dammaß F, Ambati M, Kästner M (2021) A unified phase-field model of fracture in viscoelastic materials. Contin Mech Thermodyn 33(4):1907. https://doi.org/10.1007/s00161-021-01013-3
Yin B, Steinke C, Kaliske M (2020) Formulation and implementation of strain rate-dependent fracture toughness in context of the phase-field method. Int J Numer Methods Eng 121(2):233. https://doi.org/10.1002/nme.6207
Gamonpilas C, Charalambides MN, Williams JG (2009) Determination of large deformation and fracture behaviour of starch gels from conventional and wire cutting experiments. J Mater Sci 44(18):4976. https://doi.org/10.1007/s10853-009-3760-9
Forte AE, D’Amico F, Charalambides MN, Dini D, Williams JG (2015) Modelling and experimental characterisation of the rate dependent fracture properties of gelatine gels. Food Hydrocolloids 46:180. https://doi.org/10.1016/j.foodhyd.2014.12.028
Tanné E, Li T, Bourdin B, Marigo JJ, Maurini C (2018) Crack nucleation in variational phase-field models of brittle fracture. J Mech Phys Solids 110:80. https://doi.org/10.1016/j.jmps.2017.09.006
Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via T-convergence. Commun Pure Appl Math 43(8):999. https://doi.org/10.1002/cpa.3160430805
Miehe C, Schänzel LM (2014) Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure. J Mech Phys Solids 65:93. https://doi.org/10.1016/j.jmps.2013.06.007
Hansen-Dörr AC, Dammaß F, de Borst R, Kästner M (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Eng Fract Mech 232:107004. https://doi.org/10.1016/j.engfracmech.2020.107004
Hansen-Dörr AC, de Borst R, Hennig P, Kästner M (2019) Phase-field modelling of interface failure in brittle materials. Comput Methods Appl Mech Eng 346:25. https://doi.org/10.1016/j.cma.2018.11.020
Hansen-Dörr AC, Brummund J, Kästner M (2020) Phase-field modeling of fracture in heterogeneous materials: jump conditions, convergence and crack propagation. Arch Appl Mech. https://doi.org/10.1007/s00419-020-01759-3
Han J, Matsubara S, Moriguchi S, Kaliske M, Terada K (2021) Crack phase-field model equipped with plastic driving force and degrading fracture toughness for ductile fracture simulation. Comput Mech. https://doi.org/10.1007/s00466-021-02087-1
Kuhn C, Noll T, Müller R (2016) On phase field modeling of ductile fracture. GAMM-Mitteilungen 39(1):35. https://doi.org/10.1002/gamm.201610003
Taylor GI, Quinney H (1934) The latent energy remaining in a metal after cold working. Proc R Soc Lond Ser A Contain Pap Math Phys Charact 143(849):307. https://doi.org/10.1098/rspa.1934.0004
Kuhn C, Schlüter A, Müller R (2015) On degradation functions in phase field fracture models. Comput Mater Sci 108:374. https://doi.org/10.1016/j.commatsci.2015.05.034
Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77. https://doi.org/10.1016/j.cma.2012.01.008
Wu JY (2017) A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J Mech Phys Solids 103:72. https://doi.org/10.1016/j.jmps.2017.03.015
Sargado JM, Keilegavlen E, Berre I, Nordbotten JM (2018) High-accuracy phase-field models for brittle fracture based on a new family of degradation functions. J Mech Phys Solids 111:458. https://doi.org/10.1016/j.jmps.2017.10.015
Flory PJ (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829. https://doi.org/10.1039/tf9615700829
Miehe C (1993) Computation of isotropic tensor functions. Commun Numer Methods Eng 9(11):889. https://doi.org/10.1002/cnm.1640091105
Miehe C (1998) Comparison of two algorithms for the computation of fourth-order isotropic tensor functions. Comput Struct 66(1):37. https://doi.org/10.1016/S0045-7949(97)00073-4
Ogden RW (1997) Non-linear elastic deformations. Courier Corporation, Chelmsford
Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin
Gurtin ME (1996) Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92(3–4):178. https://doi.org/10.1016/0167-2789(95)00173-5
Gent AN, Lai SM (1994) Interfacial bonding, energy dissipation, and adhesion. J Polym Sci Part B Polym Phys 32(8):1543. https://doi.org/10.1002/polb.1994.090320826
Miehe C, Schänzel LM, Ulmer H (2015) Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput Methods Appl Mech Eng 294:449. https://doi.org/10.1016/j.cma.2014.11.016
Bilgen C, Weinberg K (2019) On the crack-driving force of phase-field models in linearized and finite elasticity. Comput Methods Appl Mech Eng 353:348. https://doi.org/10.1016/j.cma.2019.05.009
Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13(1):167. https://doi.org/10.1007/BF01262690
Kuhn C (2013) Numerical and analytical investigation of a phase field model for fracture. Ph.D. thesis, TU Kaiserslautern
Euchler E (2020) Charakterisierung des Deformations- und Versagensverhaltens von Elastomeren unter querdehnungsbehinderter Zugbelastung. Ph.D. thesis, TU Dresden
Kumar A, Lopez-Pamies O (2020) The phase-field approach to self-healable fracture of elastomers: a model accounting for fracture nucleation at large, with application to a class of conspicuous experiments. Theor Appl Fract Mech 107:102550. https://doi.org/10.1016/j.tafmec.2020.102550
Mortazavian S, Fatemi A (2015) Fatigue behavior and modeling of short fiber reinforced polymer composites: a literature review. Int J Fatigue 70:297. https://doi.org/10.1016/j.ijfatigue.2014.10.005
Loew PJ, Poh LH, Peters B, Beex LA (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Comput Methods Appl Mech Eng 370:113247. https://doi.org/10.1016/j.cma.2020.113247
Han B, Ju Y, Zhou C (2012) Simulation of crack propagation in HTPB propellant using cohesive zone model. Eng Fail Anal 26:304. https://doi.org/10.1016/j.engfailanal.2012.05.025
Hageman T, de Borst R (2021) Stick-slip like behavior in shear fracture propagation including the effect of fluid flow. Int J Numer Anal Methods Geomech 45(7):965. https://doi.org/10.1002/nag.3186
Schuldt S (2018) Analysis of rate-dependent deformation and fracture phenomena during cutting of viscoelastic. Ph.D. thesis, TU Dresden
Boisly M, Schuldt S, Kästner M, Schneider Y, Rohm H (2016) Experimental characterisation and numerical modelling of cutting processes in viscoelastic solids. J Food Eng 191:1. https://doi.org/10.1016/j.jfoodeng.2016.06.019
Schab D, Zahn S, Rohm H (2021) Development of a caramel-based viscoelastic reference material for cutting tests at different rates. Materials 14(14):3798. https://doi.org/10.3390/ma14143798
Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering, 1st edn. Wiley, Chichester
Kalina K (2020) Mehrskalige Modellierung und Finite-Elemente-Simulation magnetorheologischer Elastomere. Ph.D. thesis, TU Dresden