Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giảm thể dịch bằng thuốc với Ocriplasmin: Cơ sở sử dụng và tiềm năng điều trị trong các rối loạn võng mạc - thể kính
Tóm tắt
Với sự hiểu biết ngày càng tăng về nguồn gốc và sinh lý bệnh của các rối loạn võng mạc - thể kính, đặc biệt là vai trò quan trọng của sự tách thể dịch sau bất thường trong các bệnh lý võng mạc - lòng đen, một sự thay đổi mô hình từ phẫu thuật sang liệu pháp dược lý đang diễn ra với sự phát triển của giảm thể dịch bằng thuốc. Chất đầu tiên được phê duyệt cho liệu pháp giảm thể dịch bằng thuốc là ocriplasmin, một dạng rút gọn của enzym protease serine không đặc hiệu plasmin. Mười hai nghiên cứu hình thành chương trình thử nghiệm lâm sàng hiện tại về ocriplasmin, chứng minh hiệu quả và độ an toàn của một lần tiêm vào phòng nuôi nhãn cầu ocriplasmin đối với việc điều trị bệnh nhân có hội chứng dính võng mạc - lòng đen hoặc căng thẳng võng mạc - lòng đen, bao gồm cả bệnh nhân có lỗ hoàng điểm. Mặc dù việc áp dụng ocriplasmin trong thực hành lâm sàng sau khi được phê duyệt đã cho thấy tỷ lệ thành công lên đến 78%, nhưng gần đây đã có báo cáo về những trường hợp rối loạn thị giác cấp tính thoáng qua. Do đó, có các sáng kiến mới để tinh chỉnh thêm các chỉ định lâm sàng cho việc lựa chọn bệnh nhân và xác định những tác dụng phụ có thể xảy ra. Mặc dù cần có thêm nhiều nghiên cứu, nhưng có vẻ ocriplasmin cung cấp một lựa chọn tốt cho phẫu thuật. Tương lai thuộc về giảm thể dịch bằng thuốc, và tương lai của việc giảm thể dịch bằng thuốc nằm ở phòng ngừa. Do đó, cần có những nghiên cứu dài hạn để xác định vai trò của giảm thể dịch bằng thuốc, đặc biệt là với ocriplasmin, trong việc ngăn ngừa bệnh võng mạc tiểu đường tiến triển và thoái hóa hoàng điểm liên quan đến tuổi.
Từ khóa
#Giảm thể dịch bằng thuốc #Ocriplasmin #Rối loạn võng mạc - thể kính #Đục dịch vitreo #Hội chứng dính võng mạc - lòng đen #Bệnh tiểu đường #Thoái hóa hoàng điểmTài liệu tham khảo
Sebag J. Pharmacologic vitreolysis (Guest Editorial). Retina. 1998;18:1–3.
Sebag J. Is pharmacologic vitreolysis brewing? (Guest Editorial). Retina. 2002;22:1–3.
Sebag J. Molecular biology of pharmacologic vitreolysis. Trans Am Ophthalmol Soc. 2005;103:473–94.
Sebag J. Pharmacologic vitreolysis—premise and promise of the first decade (Guest Editorial). Retina. 2009;29:871–4.
Sebag J. The emerging role of pharmacologic vitreolysis. Retinal Physician. 2010;7(2):52–6.
Sebag J. Pharmacologic vitreolysis. In: Sebag J, editor. Vitreous in health and disease, chapter VI.A. New York: Springer; 2014.
Sebag J, Yee KMP. Vitreous—from biochemistry to clinical relevance. In: Tasman W, Jaeger EA, editors. Duane’s foundations of clinical ophthalmology, vol. 1, Ch 16. Philadelphia: Lippincott Williams & Wilkins; 2007.
Crafoord S, Ghosh F, Sebag J. Vitreous biochemistry and artificial vitreous. In: Sebag J, editor. Vitreous—in health and disease, Ch I.F. New York: Springer; 2014.
Sebag J. Anomalous PVD—a unifying concept in vitreo-retinal diseases. Graefes Arch Clin Exp Ophthalmol. 2004;242:690–8.
Sebag J. Vitreous anatomy, aging, and anomalous posterior vitreous detachment. In: Dartt, Besharse, Dana, editors. Encyclopedia of the eye. Oxford: Elsevier; 2010. pp. 307–315.
Steel DH, Lotery AJ. Idiopathic vitreomacular traction and macular hole: a comprehensive review of pathophysiology, diagnosis, and treatment. Eye. 2013;27(1):212.
Gandorfer A, Rohleder M, Grosselfinger S, Haritoglou C, Ulbig M, Kampik A. Epiretinal pathology of diffuse diabetic macular edema associated with vitreomacular traction. Am J Ophthalmol. 2005;139(4):638–52.
Krebs I, Brannath W, Glittenberg K, Zeiler F, Sebag J, Binder S. Posterior vitreo-macular adhesion: a potential risk factor for exudative age-related macular degeneration. Am J Ophthalmol. 2007;144:741–6.
Robison C, Krebs I, Binder S, Barbazetto IA, Kostolis AI, Yannuzzi LA, Sadun AA, Sebag J. Vitreo-macular adhesion in active and end-stage age-related macular degeneration. Am J Ophthalmol. 2009;148:79–82.
Parel JMP. The history of vitrectomy. In: Sebag J, editor. Vitreous in health and disease, Ch V.B.1. New York: Springer; 2014.
Parel JMP, Sebag J. Recalling the development of vitreo-retinal therapeutics from vitrectomy to pharmacologic vitreolysis. Retina Times. 2014;32(3):22–6.
Tezel TH, Del Priore LH, Kaplan HJ: Pharmacologic vitreolysis with purified dispase (Vitreolysin™). In: Sebag J, editor. Vitreous—in health and disease, Ch VI.G. New York: Springer; 2014.
Liotta LA, Goldfarb RH, Brundage R. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res. 1981;41(11):4629–36.
Kohno T, Sorgente N, Ishibashi T. Immunofluorescent studies of fibronectin and laminin in the human eye. Investig Ophthalmol Vis Sci. 1987;28(3):506–14.
Kohno T, Sorgente N, Patterson R, Ryan SJ. Fibronectin and laminin distribution in bovine eye. Jpn J Ophthalmol. 1983;27(3):496–505.
Russell SR, Shepherd JD, Hageman GS. Distribution of glycoconjugates in the human retinal internal limiting membrane. Investig Ophthalmol Vis Sci. 1991;32(7):1986–95.
Verstraeten TC, Chapman C, Hartzer M, Winkler BS, Trese MT, Williams GA. Pharmacologic induction of posterior vitreous detachment in the rabbit. Arch Ophthalmol. 1993;111(6):849–54.
Hikichi T, Yanagiya N, Kado M, Akiba J, Yoshida A. Posterior vitreous detachment induced by injection of plasmin and sulfur hexafluoride in the rabbit vitreous. Retina. 1999;19(1):55–8.
Kim NJ, Yu HG, Yu YS, Chung H. Long-term effect of plasmin on the vitreolysis in rabbit eyes. Korean J Ophthalmol. 2004;18(1):35–40.
Gandorfer A, Putz E, Welge-Lüßen U, Grüterich M, Ulbig M, Kampik A. Ultrastructure of the vitreoretinal interface following plasmin assisted vitrectomy. Br J Ophthalmol. 2001;85(1):6–10.
Gandorfer A, Priglinger S, Schebitz K, et al. Vitreoretinal morphology of plasmin-treated human eyes. Am J Ophthalmol. 2002;133(1):156–9.
Li X, Shi X, Fan J. Posterior vitreous detachment with plasmin in the isolated human eye. Graefes Arch Clin Exp Ophthalmol. 2002;240(1):56–62.
Uemura A, Nakamura M, Kachi S, et al. Effect of plasmin on laminin and fibronectin during plasmin-assisted vitrectomy. Arch Ophthalmol. 2005;123(2):209–13.
Plantner JJ, Smine A, Quinn TA. Matrix metalloproteinases and metalloproteinase inhibitors in human interphotoreceptor matrix and vitreous. Curr Eye Res. 1998;17(2):132–40.
Takano A, Hirata A, Inomata Y, Kawaji T, Nakagawa K, Nagata S, Tanihara H. Intravitreal plasmin injection activates endogenous matrix metalloproteinase-2 in rabbit and human vitreous. Am J Ophthalmol. 2005;140(4):654–60.
Brown DJ, Bishop P, Hamdi H, Kenney MC. Cleavage of structural components of mammalian vitreous by endogenous matrix metalloproteinase-2. Curr Eye Res. 1996;15(4):439–45.
Monea S, Lehti K, Keski-Oja J, Mignatti P. Plasmin activates pro-matrix metalloproteinase-2 with a membrane-type 1 matrix metalloproteinase-dependent mechanism. J Cell Physiol. 2002;192(2):160–70.
Gandorfer A, Kampik A. Intravitreal plasmin injection activates endogenous matrix metalloproteinase-2 in rabbit and human vitreous. Am J Ophthalmol. 2006;141(4):784–5.
Sivak JM, Fini ME. MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog Retin Eye Res. 2002;21(1):1–14.
Staubach F, Nober V, Janknecht P. Enzyme-assisted vitrectomy in enucleated pig eyes: a comparison of hyaluronidase, chondroitinase, and plasmin. Curr Eye Res. 2004;29(4–5):261–8.
Hermel M, Prenner J, Alabdulrazza M, Dailey W, Hartzer M. Effect of intravitreal plasmin on vitreous removal through a 25-gauge cutting system in the rabbit in vivo. Graefe’s Arch Clin Exp Ophthalmol. 2009;247(3):331–4.
Sebag J, Ansari RR, Suh KI. Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefes Arch Clin Exp Ophthalmol. 2007;245(4):576–80.
Gandorfer A, Rohleder M, Sethi C, et al. Posterior vitreous detachment induced by microplasmin. Investig Ophthalmol Vis Sci. 2004;45(2):641–7.
De Smet MD, Valmaggia C, Zarranz-Ventura J, Willekens B. Microplasmin: ex vivo characterization of its activity in porcine vitreous. Invest Ophthalmol Vis Sci. 2009;50(2):814–9.
Sakuma T, Tanaka M, Mizota A, Inoue J, Pakola S. Safety of in vivo pharmacologic vitreolysis with recombinant microplasmin in rabbit eyes. Invest Ophthalmol Vis Sci. 2005;46(9):3295–9.
Chen W, Huang X, Ma XW, Mo W, Wang WJ, Song HY. Enzymatic vitreolysis with recombinant microplasminogen and tissue plasminogen activator. Eye. 2008;22(2):300–7.
De Smet MD, Gandorfer A, Stalmans P, et al. Microplasmin intravitreal administration in patients with vitreomacular traction scheduled for vitrectomy: the MIVI-I trial. Ophthalmology. 2009;116(7):1349–55, 1355.e1341–2.
Stalmans P, Delaey C, de Smet MD, et al. Intravitreal injection of microplasmin for treatment of vitreomacular adhesion: results of a prospective, randomized, sham-controlled phase II trial (the MIVI-IIT trial). Retina. 2010;30(7):1122–7.
Benz MS, Packo KH, Gonzalez V, et al. A placebo-controlled trial of microplasmin intravitreous injection to facilitate posterior vitreous detachment before vitrectomy. Ophthalmology. 2010;117(4):791–7.
Stalmans P, Benz MS, Gandorfer A, et al. Enzymatic vitreolysis with Ocriplasmin for vitreomacular traction and macular holes. N Engl J Med. 2012;367(7):606–15.
Sebag J, Buckingham B, Charles MA, Reiser K. Biochemical abnormalities in vitreous of humans with proliferative diabetic retinopathy. Arch Ophthalmol. 1992;110:1472–9.
Sebag J. Abnormalities of human vitreous structure in diabetes. Graefes Arch Clin Exp Ophthalmol. 1993;231:257–60.
Sebag J. Diabetic Vitreopathy (Guest Editorial). Ophthalmology. 1996;103:205–6.
Sebag J. Vitreoschisis in diabetic macular edema. Invest Ophthalmol Vis Sci. 2011;52(11):8455–6.
Novack RL, Staurenghi G, Girach A, Narendran N, Tolentino M. Safety of intravitreal Ocriplasmin for focal vitreo-macular adhesion in patients with exudative age-related macular degeneration. Ophthalmology. 2014. doi:10.1016/j.ophtha.2014.10.006.
National Institute for Health and Care Excellence (NICE). Ocriplasmin for treating vitreomacular traction. London: National Institute for Health and Care Excellence (NICE); 2013. p. 52 (Technology appraisal guidance; no. 297).
Stalmans P: Pharmacologic vitreolysis with ocriplasmin—clinical studies. In: Sebag J, editor. Vitreous—in health and disease, Ch VI.E.2. New York: Springer; 2014.
Tibbetts MD, Reichel E, Witkin AJ. Vision loss after intravitreal Ocriplasmin: correlation of spectral-domain coherence tomography and electroretinography. JAMA Ophthalmol. 2014;132:487–90.
Fahim AT, Khan NW, Johnson MW. Acute panretinal structural and functional abnormalities after intravitreous Ocriplasmin injection. JAMA Ophthalmol. 2014;132:484–6.
Kim JE. Safety and complications of ocriplasmin: ocriplasmin, ocriplasmin; oh, how safe art thou? JAMA Ophthalmol. 2014;132(4):379–80.
Singh RP, Li A, Bedi R, Srivastava S, Sears JE, Ehlers JP, et al. Anatomical and visual outcomes following ocriplasmin treatment for symptomatic vitreomacular traction syndrome. Br J Ophthalmol. 2014;98:356–60.
Nudleman E, Ruby AAJ, Wolfe J. Ocriplasmin for vitreomacular adhesion: aftermarket experience and finding. Invest Ophthalmol Vis Sci. 2014 (ARVO);55:E-Abstract 301.
Sebag J. The vitreous: structure, function, and pathobiology. New York: Springer; 1989.
Stallmans P. Pharmacologic vitreolysis with ocriplasmin: clinical studies. In: Sebag J, editor. Vitreous in health and disease. New York: Springer; 2014. p. 853–61.