Pharmacokinetics of nanoparticles: current knowledge, future directions and its implications in drug delivery

Future Journal of Pharmaceutical Sciences - Tập 9 - Trang 1-26 - 2023
Muthukrishnan Haripriyaa1, Krishnamurthy Suthindhiran1
1Marine Biotechnology and Bioproducts Lab, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India

Tóm tắt

Nanoparticles have emerged as a viable biological candidate with the possibility to be employed as drug carriers. They acquire high surface-to-volume ratios and unique physicochemical features such as biochemical, magnetic, optical, and electrical changes at the cellular, atomic, and molecular levels. This phenomenon has proven extensive utility for biomedical applications, as their biological activity has fewer adverse effects than traditional medications. The new spectrum of nanomaterials—nanomedicines—has accomplished disease management by detecting, restoring, and regeneration of damaged tissues. Therefore, designing appropriate nanomaterial-based drug delivery systems for final clinical evaluations requires accurate knowledge of pharmacokinetic factors relevant to the LADME in order to meet the required criteria (liberation, adsorption, distribution, metabolism, and elimination). To identify and predict the in vivo reaction of nanoparticles, a deeper understanding of the link between the physicochemical properties of nanomaterials and their contact with the body is necessary. This will allow a distinguished comparison of traditional medicines and nanoparticles. This review paper attempts to analyze the basic pharmacokinetic potential of nanoparticles in depth. Therefore, profiling the pharmacokinetic analysis will enable us to review the treatment outcome to overcome their adverse properties, provide a broad overview, and deliver remarkable ways to advance the use of nanoparticles in the biomedical industry.

Tài liệu tham khảo

Malik S, Muhammad K, Waheed Y (2023) Nanotechnology: a revolution in modern industry. Molecules 28:661. https://doi.org/10.3390/molecules28020661 Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71. https://doi.org/10.1186/s12951-018-0392-8 Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L (2009) Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 6(1):43–51. https://doi.org/10.2174/157016309787581066 Rivera Gil P, Hühn D, del Mercato LL, Sasse D, Parak WJ (2010) Nanopharmacy: inorganic nanoscale devices as vectors and active compounds. Pharmacol Res 62(2):115–125. https://doi.org/10.1016/j.phrs.2010.01.009 Abdelmawla S, Guo S, Zhang L, Pulukuri SM, Patankar P, Conley P, Trebley J, Guo P, Li QX (2011) Pharmacological characterization of chemically synthesized monomeric phi29 pRNA nanoparticles for systemic delivery. Mol Ther 19(7):1312–1322. https://doi.org/10.1038/mt.2011.35 Abbasi R, Shineh G, Mobaraki M et al (2023) Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. J Nanopart Res 25:43. https://doi.org/10.1007/s11051-023-05690-w Guo P, Coban O, Snead NM, Trebley J, Hoeprich S, Guo S, Shu Y (2010) Engineering rna for targeted sirna delivery and medical application. Adv Drug Deliv Rev 62(6):650–666. https://doi.org/10.1016/j.addr.2010.03.008 Mabrouk M, Das DB, Salem ZA, Beherei HH (2021) Nanomaterials for biomedical applications: production, characterisations, recent trends and difficulties. Molecules 26(4):1–27. https://doi.org/10.3390/molecules26041077 Devi R, Komala M, Jayanthi B (2023) In vivo pharmacokinetic studies of Antiepileptic drug-loaded polymeric nanoparticles. Latin Am J Pharm 42(2):187–195 Nienhaus K, Wang H, Nienhaus GU (2020) Nanoparticles for biomedical applications: exploring and exploiting molecular interactions at the nano-bio interface. Mater Today Adv 5:100036. https://doi.org/10.1016/j.mtadv.2019.100036 Shankar R, Pathak K (2023) An update on pharmacokinetic models. Recent Adv Pharm Innov Res. https://doi.org/10.1007/978-981-99-2302-1_16 Toomula N, Sathish Kumar D, Kumar A, Phaneendra M (2011) Role of pharmacokinetic studies in drug discovery. J Bioequivalence Bioavailab 3(11):263–267. https://doi.org/10.4172/jbb.1000097 Lu Y, Qi J, Wu W (2012) Absorption, disposition and pharmacokinetics of nanoemulsions. Curr Drug Metab 13(4):396–417. https://doi.org/10.2174/138920012800166544 Carlander U, Moto TP, Desalegn AA, Yokel RA, Johanson G (2018) Physiologically based pharmacokinetic modeling of nanoceria systemic distribution in rats suggests dose- and route-dependent biokinetics. Int J Nanomed 13:2631–2646. https://doi.org/10.2147/IJN.S157210 Bellmann S, Carlander D, Fasano A, Momcilovic D, Scimeca JA, Waldman WJ, Gombau L, Tsytsikova L, Canady R, Pereira DIA, Lefebvre DE (2015) Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(5):609–622. https://doi.org/10.1002/wnan.1333 Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K (2018) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-018-19628-z Chen WY, Cheng YH, Hsieh NH, Wu BC, Chou WC, Ho CC, Chen JK, Liao CM, Lin P (2015) Physiologically based pharmacokinetic modeling of zinc oxide nanoparticles and zinc nitrate in mice. Int J Nanomed 10:6277–6292. https://doi.org/10.2147/IJN.S86785 Wu H, Infante JR, Keedy VL, Jones SF, Chan E, Bendell J, Lee W, Kirschbrown WP, Zamboni BA, Ikeda S, Kodaira H, Rothenberg ML, Burris HA, Zamboni WC (2015) Factors affecting the pharmacokinetics and pharmacodynamics of PEGylated liposomal irinotecan (IHL-305) in patients with advanced solid tumors. Int J Nanomed 10:1201–1209. https://doi.org/10.2147/IJN.S62911 Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, Yu H, Gan Y, Wang Y, Mei L, Chen H, Hu H, Zhang Z, Jin Y (2019) Recent progress in drug delivery. Acta Pharm Sinica B 9(6):1145–1162. https://doi.org/10.1016/j.apsb.2019.08.003 Kolimi P, Narala S, Youssef AAA, Nyavanandi D, Dudhipala N (2023) A systemic review on development of mesoporous nanoparticles as a vehicle for transdermal drug delivery. Nanotheranostics 7(1):70–89. https://doi.org/10.7150/ntno.77395 Ernsting MJ, Murakami M, Roy A, Li SD (2013) Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release 172(3):782–794. https://doi.org/10.1016/j.jconrel.2013.09.013 Yuan D, He H, Wu Y, Fan J, Cao Y (2019) Physiologically based pharmacokinetic modeling of nanoparticles. J Pharm Sci 108(1):58–72. https://doi.org/10.1016/j.xphs.2018.10.037 Jeong SH, Jang JH, Lee YB (2021) Oral delivery of topotecan in polymeric nanoparticles: lymphatic distribution and pharmacokinetics. J Control Release 335(May):86–102. https://doi.org/10.1016/j.jconrel.2021.05.017 Foroozandeh P, Aziz AA (2018) Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. https://doi.org/10.1186/s11671-018-2728-6 Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71. https://doi.org/10.1116/1.2815690 Hoseini B, Jaafari MR, Golabpour A et al (2023) Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles. Sci Rep 13:18012. https://doi.org/10.1038/s41598-023-43689-4 Rizvi SAA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J SPJ Offic Publ Saudi Pharm Soc 26(1):64–70. https://doi.org/10.1016/j.jsps.2017.10.012 Bergin IL, Witzmann FA (2013) Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int J Biomed Nanosci Nanotechnol. https://doi.org/10.1504/IJBNN.2013.054515 Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ (2006) In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: Effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27(1):27–36. https://doi.org/10.1016/j.ejps.2005.08.002 Nagayama S, Ogawara KI, Fukuoka Y, Higaki K, Kimura T (2007) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342(1–2):215–221. https://doi.org/10.1016/j.ijpharm.2007.04.036 Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2):57. https://doi.org/10.3390/pharmaceutics10020057 Caracciolo G, Farokhzad OC, Mahmoudi M (2017) Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol 35(3):257–264. https://doi.org/10.1016/j.tibtech.2016.08.011 Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 11(6):673–692. https://doi.org/10.2217/nnm.16.5 Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD (2020) Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2020.101692 Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223. https://doi.org/10.1016/j.yexmp.2008.12.004 Ankamwar B (2012) Size and shape effect on biomedical applications of nanomaterials. InTech eBooks. https://doi.org/10.5772/46121 Morris AWJ, Carare RO, Schreiber S, Hawkes CA (2014) The cerebrovascular basement membrane: role in the clearance of β-amyloid and cerebral amyloid angiopathy. Front Aging Neurosci 6:1–9. https://doi.org/10.3389/fnagi.2014.00251 Karagöz B, Esser L, Duong HTT, Basuki JS, Boyer C, Davis TP (2014) Polymerization-induced self-assembly (PISA): control over the morphology of nanoparticles for drug delivery applications. Polym Chem. https://doi.org/10.1039/c3py01306e Dutt Y, Pandey RP, Dutt M et al (2023) Therapeutic applications of nanobiotechnology. J Nanobiotechnol 21:148. https://doi.org/10.1186/s12951-023-01909-z Florez L, Herrmann C, Cramer JM, Hauser CP, Koynov K, Landfester K, Crespy D, Mailänder V (2012) How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. Small 8:2222–2230. https://doi.org/10.1002/smll.201102002 Mathaes R, Winter G, Besheer A, Engert J (2014) Influence of particle geometry and PEGylation on phagocytosis of particulate carriers. Int J Pharm 465(1–2):159–164. https://doi.org/10.1016/j.ijpharm.2014.02.037 Williford JM, Santos JL, Shyam R, Mao HQ (2015) Shape control in engineering of polymeric nanoparticles for therapeutic delivery. Biomater Sci 3(7):894–907. https://doi.org/10.1039/C5BM00006H Jindal AB (2017) The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm 532(1):450–465. https://doi.org/10.1016/j.ijpharm.2017.09.028 Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D (2021) Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol. https://doi.org/10.3389/fphar.2021.601626 Du XJ, Wang J, Iqbal S, Li HJ, Cao ZT, Wang Y, Du J, Wang J (2018) The effect of surface charge on oral absorption of polymeric nanoparticles. Biomater Sci. https://doi.org/10.1039/c7bm01096f Prozeller D, Pereira J, Simon J, Mailänder V, Morsbach S, Landfester K (2019) Prevention of dominant IgG Adsorption on nanocarriers in igg-enriched blood plasma by clusterin precoating. Adv Sci (Weinheim, Baden-Wurttemberg, Germany) 6(10):1802199. https://doi.org/10.1002/advs.201802199 Kou L, Sun J, Zhai Y, He Z (2013) The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci 8(1):1–10. https://doi.org/10.1016/j.ajps.2013.07.001 Sundar DS, Antoniraj MG, Kumar CS, Mohapatra SS, Houreld NN, Ruckmani K (2016) Recent trends of biocompatible and biodegradable nanoparticles in drug delivery: a review. Curr Med Chem 23(32):3730–3751. https://doi.org/10.2174/0929867323666160607103854 Jia L, Zhang P, Sun H, Dai Y, Liang S, Bai X, Feng L (2021) Optimization of nanoparticles for smart drug delivery: a review. Nanomaterials (Basel, Switzerland) 11(11):2790. https://doi.org/10.3390/nano11112790 Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z (2020) Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. ACS Nano 14(3):3075–3095. https://doi.org/10.1021/acsnano.9b08142 McSweeney MD, Wessler T, Price LSL, Ciociola EC, Herity LB, Piscitelli JA, Zamboni WC, Forest MG, Cao Y, Lai SK (2018) A minimal physiologically based pharmacokinetic model that predicts anti-PEG IgG-mediated clearance of PEGylated drugs in human and mouse. J Control Release Offic J Control Release Soc 284:171–178. https://doi.org/10.1016/j.jconrel.2018.06.002 Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951. https://doi.org/10.1038/nbt.3330 Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515. https://doi.org/10.1021/mp800051m Byun JH, Han DG, Cho HJ, Yoon IS, Jung IH (2020) Recent advances in physiologically based pharmacokinetic and pharmacodynamic models for anticancer nanomedicines. Arch Pharmacal Res 43(1):80–99. https://doi.org/10.1007/s12272-020-01209-2 Karmakar P, Ali A, Das S (2023) Circulation of blood loaded with trihybrid nanoparticles via electro-osmotic pumping in an eccentric endoscopic arterial canal. Int Commun Heat Mass Transf 141:106593 Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65(1):21–23. https://doi.org/10.1016/j.addr.2012.04.010 Paranjpe M, Müller-Goymann CC (2014) Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci 15(4):5852–5873. https://doi.org/10.3390/ijms15045852 Andrade F, Rafael D, Videira M, Ferreira D, Sosnik A, Sarmento B (2013) Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv Drug Deliv Rev 65(13–14):1816–1827. https://doi.org/10.1016/j.addr.2013.07.020 Kalepu S, Nekkanti V (2015) Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sinica B 5(5):442–453. https://doi.org/10.1016/j.apsb.2015.07.003 Larese Filon F, Mauro M, Adami G, Bovenzi M, Crosera M (2015) Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol 72(2):310–322. https://doi.org/10.1016/j.yrtph.2015.05.005 Rowland M, Balant L, Peck C (2004) Physiologically based pharmacokinetics in drug development and regulatory science: a workshop report (Georgetown University, Washington, DC, May 29–30, 2002). AAPS J 6(1):1–12. https://doi.org/10.1208/ps060106 Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41(7):2575–2589. https://doi.org/10.1039/c1cs15248c Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7(6):753–763. https://doi.org/10.1517/17425241003777010 Kozics K, Sramkova M, Kopecka K, Begerova P, Manova A, Krivosikova Z, Sevcikova Z, Liskova A, Rollerova E, Dubaj T, Puntes V, Wsolova L, Simon P, Tulinska J, Gabelova A (2021) Pharmacokinetics, biodistribution, and biosafety of PEGylated gold nanoparticles in vivo. Nanomaterials (Basel, Switzerland) 11(7):1702. https://doi.org/10.3390/nano11071702 Siddique S, Chow JCL (2020) Gold nanoparticles for drug delivery and cancer therapy. Appl Sci 10(11):3824. https://doi.org/10.3390/app10113824 Lin Y, Yong S, Scholtz CR, Du C, Sun S, Steinkruger JD, Yang S (2023) Exploration of surface chemistry effects on the biodistribution and pharmacokinetics of dual-ligand luminescent gold nanoparticles. Colloids Surf A Physicochem Eng Asp 666:131316 Yafout M, Ousaid A, Khayati Y, Otmani I (2021) Gold nanoparticles as a drug delivery system for standard chemotherapeutics: a new lead for targeted pharmacological cancer treatments. Sci Afr. https://doi.org/10.1016/j.sciaf.2020.e00685 Zhang RX, Li J, Zhang T, Amini MA, He C, Lu B, Ahmed T, Lip H, Rauth AM, Wu XY (2018) Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy: an illustration with firsthand examples. Acta Pharmacol Sin 39(5):825–844. https://doi.org/10.1038/aps.2018.33 Adhipandito CF, Cheung SH, Lin YH, Wu SH (2021) Atypical renal clearance of nanoparticles larger than the kidney filtration threshold. Int J Mol Sci 22(20):11182. https://doi.org/10.3390/ijms222011182 Li W, Chen X (2015) Gold nanoparticles for photoacoustic imaging. Nanomedicine (Lond) 10(2):299–320. https://doi.org/10.2217/nnm.14.169 Hellebust A, Richards-Kortum R (2012) Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine (Lond) 7(3):429–445. https://doi.org/10.2217/nnm.12.12 Bailly AL, Correard F, Popov A, Tselikov G, Chaspoul F, Appay R, Al-Kattan A, Kabashin AV, Braguer D, Esteve MA (2019) In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-48748-3 Song G, Hao J, Liang C, Liu T, Gao M, Cheng L, Hu J, Liu Z (2016) Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform. Angewandte Chemie Int Ed 55(6):2122–2126. https://doi.org/10.1002/anie.201510597 Liu GW, Pippin JW, Eng DG, Lv S, Shankland SJ, Pun SH (2020) Nanoparticles exhibit greater accumulation in kidney glomeruli during experimental glomerular kidney disease. Physiol Rep 8(15):14545. https://doi.org/10.14814/phy2.14545 Lin Z, Monteiro-Riviere NA, Riviere JE (2015) Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(2):189–217. https://doi.org/10.1002/wnan.1304 Todorova M, Milusheva M, Kaynarova L, Georgieva D, Delchev V, Simeonova S, Pilicheva B, Nikolova S (2023) Drug-loaded silver nanoparticles—a tool for delivery of a mebeverine precursor in inflammatory bowel diseases treatment. Biomedicines 11(6):1593. https://doi.org/10.3390/biomedicines11061593 Hussein HA, Abdullah MA (2022) Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. Appl Nanosci 12:3071–3096. https://doi.org/10.1007/s13204-021-02018-9 Kubiński K, Górka K, Janeczko M, Martyna A, Kwaśnik M, Masłyk M, Zięba E, Kowalczuk J, Kuśtrowski P, Borkowski M et al (2023) Silver is not equal to silver: synthesis and evaluation of silver nanoparticles with low biological activity, and their incorporation into C12Alanine-based hydrogel. Molecules 28(3):1194. https://doi.org/10.3390/molecules28031194 Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44(23):8576–8607. https://doi.org/10.1039/c5cs00541h Turrina C, Berensmeier S, Schwaminger SP (2021) Bare iron oxide nanoparticles as drug delivery carrier for the short cationic peptide lasioglossin. Pharmaceuticals (Basel, Switzerland) 14(5):405. https://doi.org/10.3390/ph14050405 Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46(14):4218–4244. https://doi.org/10.1039/c6cs00636a Salimi M, Sarkar S, Fathi S, Alizadeh AM, Saber R, Moradi F, Delavari H (2018) Biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles in BALB/c mice. Int J Nanomed 13:1483–1493. https://doi.org/10.2147/IJN.S157293 Ebadi M, Buskaran K, Bullo S, Hussein M, Fakurazi S, Pastorin G (2020) Drug delivery system based on magnetic iron oxide nanoparticles coated with (polyvinyl alcohol-zinc/aluminium-layered double hydroxide-sorafenib). Alex Eng J. https://doi.org/10.1016/j.aej.2020.09.061 Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao C (2022) Lipid nanoparticles for drug delivery. Adv NanoBiomed Res 2:2100109. https://doi.org/10.1002/anbr.202100109 Ali H, Prasad Verma PR, Dubey SK, Venkatesan J, Seo Y, Kim SK, Singh SK (2017) In vitro: In vivo and pharmacokinetic evaluation of solid lipid nanoparticles of furosemide using Gastroplus™. RSC Adv 7(53):33314–33326. https://doi.org/10.1039/c7ra04038e Liang G, Ma W, Zhao Y, Liu E, Shan X, Ma W, Tang D, Li L, Niu X, Zhao W, Zhang Q (2021) Risk factors for pegylated liposomal doxorubicin-induced moderate to severe hand-foot syndrome in breast cancer patients: assessment of baseline clinical parameters. BMC Cancer 21(1):362. https://doi.org/10.1186/s12885-021-08028-8 Sun J, Bi C, Chan HM, Sun S, Zhang Q, Zheng Y (2013) Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf B Biointerfaces 111:367–375. https://doi.org/10.1016/j.colsurfb.2013.06.032 Shangguan M, Qi J, Lu Y, Wu W (2015) Comparison of the oral bioavailability of silymarin-loaded lipid nanoparticles with their artificial lipolysate counterparts: implications on the contribution of integral structure. Int J Pharm 489(1–2):195–202. https://doi.org/10.1016/j.ijpharm.2015.05.005 Gugleva V, Andonova V (2023) Recent progress of solid lipid nanoparticles and nanostructured lipid carriers as ocular drug delivery platforms. Pharmaceuticals 16(3):474. https://doi.org/10.3390/ph16030474 Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release Offic J Control Release Soc 172(2):456–466. https://doi.org/10.1016/j.jconrel.2013.05.025 Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, Bawendi MG, Semmler-Behnke M, Frangioni JV, Tsuda A (2010) Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 28(12):1300–1303. https://doi.org/10.1038/nbt.1696 Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9(2):223–243. https://doi.org/10.1016/j.nantod.2014.04.008 Onoue S, Yamada S, Chan HK (2014) Nanodrugs: pharmacokinetics and safety. Int J Nanomed 9(1):1025–1037. https://doi.org/10.2147/IJN.S38378 Wong PT, Choi SK (2015) Mechanisms of drug release in nanotherapeutic delivery systems. Chem Rev 115(9):3388–3432. https://doi.org/10.1021/cr5004634 Abdifetah O, Na-Bangchang K (2019) Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: a systematic review. Int J Nanomed 14:5659–5677. https://doi.org/10.2147/IJN.S213229 Bailly AL, Correard F, Popov A et al (2019) In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci Rep 9:12890. https://doi.org/10.1038/s41598-019-48748-3 Ramos TI, Villacis-Aguirre CA, López-Aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N (2022) The Hitchhiker’s guide to human therapeutic nanoparticle development. Pharmaceutics 14(2):247. https://doi.org/10.3390/pharmaceutics14020247 Rodallec A, Benzekry S, Lacarelle B, Ciccolini J, Fanciullino R (2018) Pharmacokinetics variability: why nanoparticles are not just magic-bullets in oncology. Crit Rev Oncol Hematol 129:1–12. https://doi.org/10.1016/j.critrevonc.2018.06.008 Arms L, Smith DW, Flynn J, Palmer W, Martin A, Woldu A, Hua S (2018) Advantages and limitations of current techniques for analyzing the biodistribution of nanoparticles. Front Pharmacol 9:1–17. https://doi.org/10.3389/fphar.2018.00802 Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW (2016) Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J Control Release 240:332–348. https://doi.org/10.1016/j.jconrel.2016.01.020