Pharmacogenomic Cluster Analysis of Lung Cancer Cell Lines Provides Insights into Preclinical Model Selection in NSCLC

Yueyue Shen1, Ying Xiang2, Xiaolong Huang2, Youhua Zhang2, Z.Q. Yue2
1Anhui Agricultural University
2School of Information and Computer, Anhui Agricultural University, Hefei, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

Graham S, Shaban M, Qaiser T et al (2018) Classification of lung cancer histology images using patch-level summary statistics. In: Med Imaging 2018: Digit Pathol. https://doi.org/10.1117/12.2293855

Greenlee RT, Murray T, Bolden S, Wingo PA (2000) Cancer statistics, 2000. CA Cancer J Clin 50:7–33. https://doi.org/10.3322/canjclin.50.1.7

Hutter C, Zenklusen JC (2018) The cancer genome atlas: creating lasting value beyond its data. Cell 173:283–285. https://doi.org/10.1016/j.cell.2018.03.042

Zhang J, Bajari R, Andric D et al (2019) The international cancer genome consortium data portal. Nat Biotechnol 37:367–369. https://doi.org/10.1038/s41587-019-0055-9

Hammerman PS, Lawrence MS, Voet D et al (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525. https://doi.org/10.1038/nature11404

Collisson EA, Campbell JD, Brooks AN et al (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550. https://doi.org/10.1038/nature13385

Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553:446–454. https://doi.org/10.1038/nature25183

Kim HS, Mitsudomi T, Soo RA, Cho BC (2013) Personalized therapy on the horizon for squamous cell carcinoma of the lung. Lung Cancer 80:249–255. https://doi.org/10.1016/j.lungcan.2013.02.015

Yuan M, Huang L-L, Chen J-H et al (2019) The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduct Target Ther 4:61–61. https://doi.org/10.1038/s41392-019-0099-9

Goodspeed A, Heiser LM, Gray JW, Costello JC (2016) Tumor-derived cell lines as molecular models of cancer pharmacogenomics. Mol Cancer Res 14:3–13. https://doi.org/10.1158/1541-7786.MCR-15-0189

Barretina J, Caponigro G, Stransky N et al (2012) The Cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607. https://doi.org/10.1038/nature11003

Yang W, Soares J, Greninger P et al (2013) Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41:D955–D961. https://doi.org/10.1093/nar/gks1111

Tate JG, Bamford S, Jubb HC et al (2019) COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47:D941–D947. https://doi.org/10.1093/nar/gky1015

Mouradov D, Sloggett C, Jorissen RN et al (2014) Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res 74:3238–3247. https://doi.org/10.1158/0008-5472.CAN-14-0013

Sinha R, Winer AG, Chevinsky M et al (2017) Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection. Nat Commun 8:15165. https://doi.org/10.1038/ncomms15165

Landa I, Pozdeyev N, Korch C et al (2019) Comprehensive genetic characterization of human thyroid cancer cell lines: a validated panel for preclinical studies. Clin Cancer Res 25:3141–3151. https://doi.org/10.1158/1078-0432.CCR-18-2953

Najgebauer H, Yang M, Francies HE et al (2020) CELLector: genomics-guided selection of cancer in vitro models. Cell Syst 10:424-432.e6. https://doi.org/10.1016/j.cels.2020.04.007

Zhao N, Liu Y, Wei Y et al (2017) Optimization of cell lines as tumour models by integrating multi-omics data. Brief Bioinform 18:515–529. https://doi.org/10.1093/bib/bbw082

Hynds RE, Frese KK, Pearce DR et al (2021) Progress towards non-small-cell lung cancer models that represent clinical evolutionary trajectories. Open Biol 11:200247. https://doi.org/10.1098/rsob.200247

Stransky N, Ghandi M, Kryukov GV et al (2015) Pharmacogenomic agreement between two cancer cell line data sets. Nature 528:84–87. https://doi.org/10.1038/nature15736

Goldman M, Craft B, Brooks A et al (2019) The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. bioRxiv. https://doi.org/10.1101/326470

Ding Z, Zu S, Gu J (2016) Evaluating the molecule-based prediction of clinical drug responses in cancer. Bioinformatics 32:2891–2895. https://doi.org/10.1093/bioinformatics/btw344

Skidmore ZL, Wagner AH, Lesurf R et al (2016) GenVisR: genomic visualizations in R. Bioinformatics 32:3012–3014. https://doi.org/10.1093/bioinformatics/btw325

Akbani R, Akdemir KC, Aksoy BA et al (2015) Genomic classification of cutaneous melanoma. Cell 161:1681–1696. https://doi.org/10.1016/j.cell.2015.05.044

Nazari Z, Kang D, Asharif MR et al (2015) A new hierarchical clustering algorithm. In: 2015 Int Conf Intell Inform Biomed Sci (ICIIBMS). https://doi.org/10.1109/ICIIBMS.2015.7439517

P S, Gupta S, (2011) A comparative study on distance measuring approaches for clustering. Int J Res Comput Sci 2:29–31. https://doi.org/10.7815/ijorcs.21.2011.011

Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244. https://doi.org/10.1080/01621459.1963.10500845

Xu Q, Zhang Q, Liu J, Luo B (2020) Efficient synthetical clustering validity indexes for hierarchical clustering. Expert Syst Appl 151:113367. https://doi.org/10.1016/j.eswa.2020.113367

Nana FA, Lecocq M, Ladjemi MZ et al (2019) Therapeutic potential of focal adhesion kinase inhibition in small cell lung cancer. Mol Cancer Ther 18:17–27. https://doi.org/10.1158/1535-7163.MCT-18-0328

Hecker L (2018) Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace. Am J Physiol-Lung Cell Mol Physiol 314:1642–1653. https://doi.org/10.1152/ajplung.00275.2017

Inamura K (2017) Lung cancer: understanding its molecular pathology and the 2015 WHO classification. Front Oncol 7:193. https://doi.org/10.3389/fonc.2017.00193