Phantom studies in osteoporosis
Tóm tắt
Differences in measurement results of bone densitometry are an obvious disadvantage of this method. The differences are mainly due to the calibration procedures for bone densitometry systems employed by the manufacturers, the software algorithms for defining the region of interest or edge detection, and the physiological inhomogeneity of body composition. Whereas intea-unit variation of reproducibility is acceptable, inter-unit variation may reach up to 20%. This paper discusses the problems of designing measurement phantoms and underlines the need for standardisation of phantoms for calibration, cross-calibration, and quality control in bone densitometry. A general phantom used for cross-calibration should handle all parameters influencing measurement of bone minerals to yieldet dynamic reference values. One has to note that densitometry systems do not measure the absolute bone mineral content but a model-related equivalent of the calibration material.
Tài liệu tham khảo
Buttermann G, Eiber J, Henning J, Pabst HW. Doppelphotonen-Absorptiometrie: Eine neue Methode zur Bestimmung des Knochenmineralgehaltes. I. Grundlagen. Nucl Med 1988; 27:12–18.
Kalender W. A phantom for standardization and quality control in spinal bone mineral measurement by QCT and DXA: design considerations and specifications. Med Phys 1992; 19:583–586.
Kalender-W, Fischer M. Quality control and standardization of absorptiometric and computer-tomographic measurements of bone mineral mass and density. In: Proceedings of the workshop “Test phantoms and optimisation in diagnostic radiology and nuclear medicine”.
Faulkner KG, van Kuijk C, Glüer CC, Genant HK. Evaluation of the European Spine Phantom as a bone mineral standard [abstract]. 9th International Workshop of Bone Densitometry, Traverse City 1992
Royle GJ, Speller RD. Phantoms for evaluating the performance characteristics of bone densitometers. Br J Radiol 1992; 65:1030–1034.
Roos BO, Sköldborn H. Dual photon absorptiometry in lumbar vertebrae. I. Theory and method. Acta Radiol Ther Phys Biol 1974; 13:266–280.
Spitz J, Stoecker M, Clemenz N, Kempers B, Fischer M. Vergleichende Messung des Knochenmineralgehaltes mit DPA und DXA — Erste klinische Erfahrungen. Fortschr Röntgenstr 1990; 152:340–344.
Mooney MJ, Speller RD. Photon absorption measurements of bone density in the presence of scattered radiation. Phys Med Biol 1992; 37:1873–1882.
Lai KC, Goodsitt MM, Murano R, Chesnut CH. A comparison of two dual-energy X-ray absorptiometry systems for spinal bone mineral measurement. Calcif Tissue Int 1992; 50:203–208.
Rencken ML, Murano R, Drinkwater BL, Chesnut CH. In vitro comparability of dual energy X-ray absorptiometry (DEXA) bone densitometers. Calcif Tissue Int 1991; 48:245–248.
Blake GM, Tong CM, Fogelman I. Intersite comparison of the Hologic QDR-1000 dual energy X-ray bone densitometer. Br J Radiol 1991; 64:440–446.
Laskey MA, Flaxman ME, Barber RW, Trafford S, Hayball MP, Lyttle KD, Crisp AJ, Compston JE. Comparative performance in vitro and in vivo of Lunar DPX and Hologic QDR-1000 dual energy X-ray absorptiometers. Br J Radiol 1991; 64:1023–1029.
Tothill P, Pye DW. Errors due to non-uniform distribution of fat in dual X-ray absorptiometry of the lumbar spine. Br J Radiol 1992; 65:807–813.
Steenbeek JCM, van Kuijk C, Grashuis JL. Consequences of mismatches in the description of the vertebral body in dual energy quantitative computed tomography [abstract]. Osteoporosis Int 1991; 1:192.
Blake GM, McKeeney DB, Chhaya SC, Ryan PJ, Fogelman I. Dual energy X-ray absorptiometry: the effects of beam hardening on bone density measurements. Med Phys 1992; 19:459–465.
Nord RH. Soft tissue composition phantom for DXA [abstract]. Osteoporosis Int 1991; 1: 203.
Laskey MA, Lyttle KD, Flaxman ME, Barber RW. The influence of soft tissue depth and composition on the performance of the Lunar dual-energy X-ray absorptiometer whole-body scanning mode. Eur J Clin Nutr 1992; 46:39–45.