Perspectives and Trends in the Application of Photodynamic Inactivation for Microbiological Food Safety

Comprehensive Reviews in Food Science and Food Safety - Tập 18 Số 2 - Trang 402-424 - 2019
Vinayak Ghate1, Weibiao Zhou1, Hyun‐Gyun Yuk2
1Food Science & Technology Programme, Dept. of Chemistry Natl. Univ. of Singapore Science Drive 2 117543 Singapore
2Dept. of Food Science and Technology, Korea National Univ. of Transportation, 61 Daehak-ro Jeungpyeong-gun, Chungbuk, 27909 Republic of Korea

Tóm tắt

AbstractPhotodynamic inactivation is a phenomenon that has the potential to cause microbial inactivation using visible light. It works on the principle that photosensitizers within the microbial cell can be activated using specific wavelengths to trigger a series of cytotoxic reactions. In the last few years, efforts to apply this intervention technology for food safety have been on the rise. This review article offers a detailed commentary on this research. The mechanism of photodynamic inactivation has been discussed as have the factors that influence its efficacy in food. Efforts to inactivate bacteria, fungi, and viruses have been analyzed in dedicated sections and so has the application of this technology to specific product classes such as fresh produce, dry fruits, seafood, and poultry. The challenges and opportunities facing the application of this technology to food systems have been evaluated and future research directions proposed. Thus, this review will provide insights for researchers and industry personnel looking for a novel solution to combat microbial contamination and resistance.

Từ khóa


Tài liệu tham khảo

10.1016/j.jphotobiol.2017.06.009

Anderson D. &Lucore L. A.(2012).Validating the reduction of Salmonella and other pathogens in heat processed low‐moisture foods. Reston VA. Retrieved fromhttp://ucfoodsafety.ucdavis.edu/files/224455.pdf

10.1111/j.1541-4337.2004.tb00057.x

10.1016/S1568-461X(01)80112-5

10.1111/jam.13767

Brovko L., 2010, Photodynamic Treatment. A New Efficient Alternative for Surface Sanitation. Advances in Food and Nutrition Research

10.1016/j.jphotobiol.2017.05.008

10.1039/C5PP00376H

Buchovec I., 2010, Photodynamic inactivation of food pathogen Listeria monocytogenes, Food Technology and Biotechnology, 48, 207

10.1016/j.jphotobiol.2010.01.007

10.1111/j.1365-2672.2008.03993.x

Buettner G. R.(2013).Molecular targets of photosensitization. Retrieved May 7 2018 fromhttp://photobiology.info/Buettner.html

10.1016/0304-4165(87)90060-2

10.1111/j.1751-1097.2012.01117.x

Cebrián G., 2016, Comparative resistance of bacterial foodborne pathogens to non‐thermal technologies for food preservation, Frontiers in Microbiology, 7, 1, 10.3389/fmicb.2016.00734

Centers for Disease Control and Prevention. (2018).Outbreak of multidrug‐resistantSalmonellainfections linked to raw chicken products ‐ multistate outbreak ofSalmonellainfections linked to raw chicken products. Retrieved November 7 2018 fromhttps://www.cdc.gov/salmonella/infantis-10-18/index.html

10.1111/j.1751-1097.2012.01101.x

10.1111/1541-4337.12155

10.1128/AEM.02788-13

10.1016/j.jfoodeng.2016.10.013

10.1016/j.foodcont.2015.04.029

10.4315/0362-028X.JFP-15-394

10.1016/j.fm.2014.10.014

10.1016/j.ijfoodmicro.2013.07.018

10.1039/C7PP00165G

10.1002/fsn3.354

10.1089/fpd.2015.2084

10.1039/b311900a

10.1111/lam.12330

10.1016/j.febslet.2009.12.041

10.1002/lsm.20361

10.1016/j.foodcont.2017.08.017

Jucker B. a, 1996, Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and teflon, Microbiology, 178, 5472

10.1111/j.1365-2672.2012.05296.x

10.1016/j.drup.2017.07.003

10.1016/j.foodcont.2017.06.040

10.1016/j.fm.2016.10.002

10.1016/j.jphotobiol.2015.08.032

10.1016/j.ijfoodmicro.2016.12.023

10.1128/AEM.02582-16

Kingsley D. H., 2017, Evaluation of 405‐nm monochromatic light for inactivation of Tulane virus on blueberry surfaces, Journal of Applied Microbiology, 124, 1

10.1016/S0956-7135(01)00057-3

10.1016/j.jphotobiol.2015.05.005

10.1111/jam.12975

10.1016/j.fm.2016.10.032

10.4315/0362-028X.JFP-15-418

Lewis M. J., 2006, Physical properties of food and food processing systems, 324

10.1016/j.foodcont.2018.01.002

10.1016/j.foodcont.2017.09.006

Lim M. E., 2012, Small NIR‐to‐VIS upconverting nanoparticles for photodynamic therapy, Colloidal Nanocrystals for Biomedical Applications VII, 8232, 1

10.1016/j.foodres.2016.07.012

Lukšienė Ž., 2003, Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment, Medicina, 39, 1137

Lukšienė Ž, 2009, Photosensitization for food safety, Synthesis, 4, 62

10.1111/j.1365-2672.2009.04383.x

10.1111/j.1365-2672.2010.04780.x

10.1016/j.jphotobiol.2010.08.002

10.1111/j.1365-2672.2007.03403.x

10.1016/j.jphotobiol.2011.06.011

Luksiene Z. &Paskeviciute E.(2011b).Novel approach to the microbial decontamination of strawberries: Chlorophyllin‐based photosensitization 1274–1283.https://doi.org/10.1111/j.1365-2672.2011.04986.x

Lukšiene Ž., 2005, Inactivation of possible fungal food contaminants by photosensitization, Food Technology and Biotechnology, 43, 335

Lukšiene Ž., 2004, Inactivation of fungi in vitro by photosensitization: Preliminary results, Annals of Agricultural and Environmental Medicine, 11, 215

Lukšienė Ž., 2004, Photodynamic inactivation of harmful and pathogenic microorganisms, Veterinarija Ir Zootechnika, 26, 48

10.1111/j.1365-2672.2009.04341.x

10.1128/AEM.01892-08

10.1039/C5PP00037H

10.1007/s10295-012-1103-3

10.1111/php.12077

10.1016/S1011-1344(99)00125-6

10.1100/2012/137805

10.1007/s101030050094

10.3390/ma6030817

10.3201/eid1903.111866

Paskeviciute E., 2014, Enviromnetally Friendly and Safe Technologies for Quality of Fruits and Vegetables, 222

10.1039/c0pp00360c

10.1016/j.foodcont.2018.07.027

10.1104/pp.111.182394

10.1007/s12560-016-9255-3

10.3168/jds.2014-8691

10.1016/j.aquaculture.2017.09.046

10.1007/s101030200039

10.1016/j.fm.2016.12.011

10.1016/j.lwt.2016.04.028

10.1088/0031-9155/41/5/002

10.1016/S1011-1344(99)00062-7

Thakuri P. S., 2011, Antibacterial photodynamic therapy on Staphylococcus aureus and Pseudomonas aeruginosa in‐vitro, Nepal Medical College Journal: NMCJ, 13, 281

10.1039/C4PP00123K

10.1371/journal.pone.0187418

Trurnit H. J., 1959, Chloroplast studies. I. Absorption spectra of chlorophyll monolayers at liquid interfaces, BBA ‐ Biochimica et Biophysica Acta

10.1089/clm.1998.16.245

10.1016/j.drup.2017.10.002

WHO. (2018a).Listeriosis ‐ Australia. Retrieved May 14 2018 fromhttp://www.who.int/csr/don/09-april-2018-listeriosis-australia/en/

WHO. (2018b).Listeriosis ‐ South Africa. Retrieved May 14 2018 fromhttp://www.who.int/csr/don/28-march-2018-listeriosis-south-africa/en/

10.3109/03639045.2014.919315