Perspectivas moleculares en cardiopatía hipertrófica: abordaje epigenético desde la modificación de la cromatina
Tài liệu tham khảo
Zhang, 2015, Histone methylations in heart development, congenital and adult heart diseases, Epigenomics., 7, 321, 10.2217/epi.14.60
Reeves, 2010, Recent advances in cardiac rehabilitation, Curr Opin Cardiol., 25, 589, 10.1097/HCO.0b013e32833f0208
Hancock, 2015, Epigenetic regulation by histone demethylases in hypoxia, Epigenomics., 7, 791, 10.2217/epi.15.24
Maron, 1995, Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults, Circulation., 92, 785, 10.1161/01.CIR.92.4.785
Authors/Task Force m, Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F et al., 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(39):2733-79.
Kokura, 2009, In vitro histone demethylase assays, Methods Mol Biol., 523, 249, 10.1007/978-1-59745-190-1_17
Stenzig, 2016, DNA methylation in an engineered heart tissue model of cardiac hypertrophy: common signatures and effects of DNA methylation inhibitors, Basic Res Cardiol., 111, 9, 10.1007/s00395-015-0528-z
Kehat, 2010, Molecular pathways underlying cardiac remodeling during pathophysiological stimulation, Circulation., 122, 2727, 10.1161/CIRCULATIONAHA.110.942268
Maillet, 2013, Molecular basis of physiological heart growth: fundamental concepts and new players, Nat Rev Mol Cell Biol., 14, 38, 10.1038/nrm3495
Li, 1996, Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development, J Mol Cell Cardiol., 28, 1737, 10.1006/jmcc.1996.0163
Barry, 2008, Molecular regulation of cardiac hypertrophy, Int J Biochem Cell Biol., 40, 2023, 10.1016/j.biocel.2008.02.020
Olver, 2015, Molecular Mechanisms for Exercise Training-Induced Changes in Vascular Structure and Function: Skeletal Muscle, Cardiac Muscle, and the Brain, Prog Mol Biol Transl Sci., 135, 227, 10.1016/bs.pmbts.2015.07.017
Barnes, 2014, Whole-genome profiling highlights the molecular complexity underlying eccentric cardiac hypertrophy, Ther Adv Cardiovasc Dis., 8, 97, 10.1177/1753944714527490
Tian, 2013, Progress in the molecular genetics of hypertrophic cardiomyopathy: a mini-review, Gerontology., 59, 199, 10.1159/000346146
Mohamed, 2016, Molecular and structural transition mechanisms in long-term volume overload, Eur J Heart Fail., 18, 362, 10.1002/ejhf.465
LaPointe, 2005, Molecular regulation of the brain natriuretic peptide gene, Peptides., 26, 944, 10.1016/j.peptides.2004.08.028
Ogawa, 1995, Molecular biology and biochemistry of natriuretic peptide family, Clin Exp Pharmacol Physiol., 22, 49, 10.1111/j.1440-1681.1995.tb01918.x
Barry, 2010, What causes a broken heart--molecular insights into heart failure, Int Rev Cell Mol Biol., 284, 113, 10.1016/S1937-6448(10)84003-1
LeGoff, 2015, Mechanical Forces and growth in animal tissues, Cold Spring Harb Perspect Biol.
Stawowy, 2005, Protein kinase C epsilon mediates angiotensin II-induced activation of beta1-integrins in cardiac fibroblasts, Cardiovasc Res., 67, 50, 10.1016/j.cardiores.2005.03.002
Woischwill, 2005, Regulation of the human atrial myosin light chain 1 promoter by Ca2+-calmodulin-dependent signaling pathways, FASEB J., 19, 503, 10.1096/fj.04-2201com
Duquesnes, 2009, The EGF receptor activates ERK but not JNK Ras-dependently in basal conditions but ERK and JNK activation pathways are predominantly Ras-independent during cardiomyocyte stretch, Int J Biochem Cell Biol., 41, 1173, 10.1016/j.biocel.2008.09.032
Lorenz, 2009, A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy, Nat Med., 15, 75, 10.1038/nm.1893
Lorenz, 2009, Cardiac hypertrophy: targeting Raf/MEK/ERK1/2-signaling, Int J Biochem Cell Biol., 41, 2351, 10.1016/j.biocel.2009.08.002
Hayashi, 2004, Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice, J Mol Med (Berl)., 82, 800, 10.1007/s00109-004-0602-8
Low, 2011, Developmental plasticity and epigenetic mechanisms underpinning metabolic and cardiovascular diseases, Epigenomics., 3, 279, 10.2217/epi.11.17
O'Sullivan, 2012, Epigenetics and developmental programming of adult onset diseases, Pediatr Nephrol., 27, 2175, 10.1007/s00467-012-2108-x
Lomberk, 2012, Sequence-specific recruitment of heterochromatin protein 1 via interaction with Kruppel-like factor 11, a human transcription factor involved in tumor suppression and metabolic diseases, J Biol Chem., 287, 13026, 10.1074/jbc.M112.342634
Chen, 2014, Release and activity of histone in diseases, Cell Death Dis., 5, e1370, 10.1038/cddis.2014.337
Tingare, 2013, Epigenetics in the heart: the role of histone modifications in cardiac remodelling, Biochem Soc Trans., 41, 789, 10.1042/BST20130012
Cao, 2014, Epigenetic regulation and heart failure, Expert Rev Cardiovasc Ther., 12, 1087, 10.1586/14779072.2014.942285
Hohl, 2013, HDAC4 controls histone methylation in response to elevated cardiac load, J Clin Invest., 123, 1359, 10.1172/JCI61084
Gillette, 2015, Readers, writers, and erasers: chromatin as the whiteboard of heart disease, Circ Res., 116, 1245, 10.1161/CIRCRESAHA.116.303630
McKinsey, 2012, Therapeutic potential for HDAC inhibitors in the heart, Annu Rev Pharmacol Toxicol., 52, 303, 10.1146/annurev-pharmtox-010611-134712
Berry, 2008, Histone deacetylase inhibition in the treatment of heart disease, Expert Opin Drug Saf., 7, 53, 10.1517/14740338.7.1.53
Sui, 2014, Comparative analyses of histone H3K9 trimethylations in the heart and spleen of normal humans, Genet Mol Res., 13, 1697, 10.4238/2014.January.14.5
Suzuki, 2013, Identification of the KDM2/7 histone lysine demethylase subfamily inhibitor and its antiproliferative activity, J Med Chem., 56, 7222, 10.1021/jm400624b
Shi, 2013, The discovery of histone demethylases, Cold Spring Harb Perspect Biol., 5., 10.1101/cshperspect.a017947
Cheng, 2014, Structural and functional coordination of DNA and histone methylation, Cold Spring Harb Perspect Biol., 6, 10.1101/cshperspect.a018747
Tang, 2014, Expression profiles of histone lysine demethylases during cardiomyocyte differentiation of mouse embryonic stem cells, Acta Pharmacol Sin., 35, 899, 10.1038/aps.2014.40
Bondue, 2008, Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification, Cell Stem Cell., 3, 69, 10.1016/j.stem.2008.06.009
Nicholson, 2013, A hypomorphic lsd1 allele results in heart development defects in mice, PLoS One., 8, e60913, 10.1371/journal.pone.0060913
Lee, 2012, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program, Dev Cell., 22, 25, 10.1016/j.devcel.2011.11.009
Verrier, 2011, A new isoform of the histone demethylase JMJD2A/KDM4A is required for skeletal muscle differentiation, PLoS Genet., 7, e1001390, 10.1371/journal.pgen.1001390
Gray, 2005, Functional characterization of JMJD2A, a histone deacetylase- and retinoblastoma-binding protein, J Biol Chem., 280, 28507, 10.1074/jbc.M413687200