Personalisierte Ischämiediagnostik beim chronischen Koronarsyndrom
Tóm tắt
Eine myokardiale Ischämie entsteht durch ein Missverhältnis von Sauerstoffbedarf und -angebot des Herzmuskelgewebes. Die koronare Herzkrankheit stellt die häufigste Ursache hierfür dar. Dennoch ist nicht jede Stenose der Herzkranzgefäße hämodynamisch relevant und führt zu einer Ischämie. Leitlinien empfehlen eine nichtinvasive Ischämiediagnostik vor einer interventionellen Behandlung bei Patienten mit chronischem Koronarsyndrom. Folgende Verfahren stehen hierfür zur Verfügung und fließen entsprechend in die klinische Routine ein: kardiale Computertomographie, Stressechokardiographie, nuklear-kardiologische Verfahren (Positronenemissionstomographie und „single photon emission computed tomography“) und kardiovaskuläre Magnetresonanztomographie. Der vorliegende Beitrag gibt einen Überblick über Indikationen, relative Vor- und Nachteile der einzelnen Methoden und ihren suffizienten Einsatz in der Klinik.
Tài liệu tham khảo
Tonino PAL et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224
Boden WE et al (2007) Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 356:1503–1516
Maron DJ et al (2020) Initial invasive or conservative strategy for stable coronary disease. N Engl J Med 382:1395–1407
Klinke, Pape, Silbernagel (2010) Physiologie. Thieme, Stuttgart
Zamir M (2005) The physics of coronary blood flow. Springer US, New York https://doi.org/10.1007/b136492
Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis: Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94
Demer LL et al (1989) Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 79:825–835
(2019) ESC Guidelines for the diagnosis and management of chronic coronary syndromes | European Heart Journal | Oxford Academic. https://academic.oup.com/eurheartj/article/41/3/407/5556137. Zugegriffen: 26. Aug. 2020
Daly C et al (2003) The value of routine non-invasive tests to predict clinical outcome in stable angina. Eur Heart J 24:532–540
Juarez-Orozco LE et al (2019) Impact of a decreasing pre-test probability on the performance of diagnostic tests for coronary artery disease. Eur Heart J Cardiovasc Imaging 20:1198–1207
Foldyna B et al (2019) Pretest probability for patients with suspected obstructive coronary artery disease: re-evaluating Diamond-Forrester for the contemporary era and clinical implications: insights from the PROMISE trial. Eur Heart J Cardiovasc Imaging 20:574–581
Genders TSS et al (2012) Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts. BMJ 344. https://doi.org/10.1136/bmj.e3485
Knuuti J et al (2018) The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: a meta-analysis focused on post-test disease probability. Eur Heart J 39:3322–3330
Shaw Leslee J et al (2011) Comparative effectiveness of exercise electrocardiography with or without myocardial perfusion single photon emission computed tomography in women with suspected coronary artery disease. Circulation 124:1239–1249
Budoff MJ et al (2017) Prognostic value of coronary artery calcium in the PROMISE study (prospective multicenter imaging study for evaluation of chest pain). Circulation 136:1993–2005
Villines TC et al (2011) Prevalence and severity of coronary artery disease and adverse events among symptomatic patients with coronary artery calcification scores of zero undergoing coronary computed tomography angiography: results from the CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry. J Am Coll Cardiol 58:2533–2540
SCOT-HEART Investigators et al (2018) Coronary CT angiography and 5‑year risk of myocardial infarction. N Engl J Med 379:924–933
Gonzalez JA et al (2015) meta-analysis of diagnostic performance of coronary computed tomography angiography, computed tomography perfusion, and computed tomography-fractional flow reserve in functional myocardial Ischemia assessment versus invasive fractional flow reserve. Am J Cardiol 116:1469–1478
Bettencourt N et al (2013) Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol 61:1099–1107
Picano E (2015) Stress echocardiography. Springer, Berlin Heidelberg https://doi.org/10.1007/978-3-319-20958-6
Sicari R et al (2009) Stress echocardiography expert consensus statement—executive summaryEuropean association of echocardiography (EAE) (a registered branch of the ESC). Eur Heart J 30:278–289
Hachamovitch R et al (2011) Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J 32:1012–1024
Geworski L (2004) Voraussetzungen für die Quantifizierung in der Emissions-Tomographie https://doi.org/10.18452/13918
Ghosh N, Rimoldi OE, Beanlands RSB, Camici PG (2010) Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J 31:2984–2995
Wagner A et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379
Ekström K et al (2019) Impact of multiple myocardial scars detected by CMR in patients following STEMI. JACC Cardiovasc Imaging 12:2168–2178
Greenwood JP et al (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379:453–460
Schwitter J et al (2008) MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 29:480–489
Schwitter J et al (2013) MR-IMPACT II: magnetic resonance imaging for myocardial perfusion assessment in coronary artery disease trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J 34:775–781
Nagel E et al (2019) Magnetic resonance perfusion or fractional flow reserve in coronary disease. N Engl J Med 380:2418–2428
Kwong RY et al (2019) Cardiac magnetic resonance stress perfusion imaging for evaluation of patients with chest pain. J Am Coll Cardiol 74:1741–1755
Ge Y et al (2020) Cost-effectiveness analysis of stress cardiovascular magnetic resonance imaging for stable chest pain syndromes. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2020.02.029
Pijls NHJ et al (2007) Percutaneous Coronary Intervention of Functionally Nonsignificant Stenosis: 5‑Year Follow-Up of the DEFER Study. J Am Coll Cardiol 49:2105–2111
Smulders MW et al (2017) Comparison of the prognostic value of negative non-invasive cardiac investigations in patients with suspected or known coronary artery disease‑a meta-analysis. Eur Heart J Cardiovasc Imaging 18:980–987
Spertus JA et al (2020) Health-status outcomes with invasive or conservative care in coronary disease. N Engl J Med 382:1408–1419