Persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances pose an equivalent level of concern to persistent, bioaccumulative and toxic (PBT) and very persistent and very bioaccumulative (vPvB) substances under REACH

Sarah E. Hale1, Hans Peter H. Arp1, Ivo Schliebner2, Michael Neumann2
1Norwegian Geotechnical Institute (NGI), Ullevål Stadion, P.O. Box 3930, 0806, Oslo, Norway
2German Environment Agency (UBA), Section IV 2.3 Chemicals, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany

Tóm tắt

Abstract Background

Under the EU chemicals regulation REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals EC 1907/2006), registrants are not obliged to provide information related to intrinsic substance properties for substances that pose a threat to the drinking water resources. In 2019, perfluorobutane sulfonic acid (PFBS) and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoic acid (HFPO-DA trade name GenX) were demonstrated to have an equivalent level of concern (ELoC) to persistent, bioaccumulative and toxic or very persistent and very bioaccumulative (PBT/vPvB) substances owing to their persistent, mobile and toxic (PMT) substance properties and very persistent and very mobile (vPvM) substance properties, respectively. They were both subsequently identified as substances of very high concern (SVHC) applying Article 57(f) in REACH. This work follows up on this regulatory decision by presenting a science based, conceptual level comparison that all PMT/vPvM substances pose an ELoC to PBT/vPvB substances. Using the two cases named above, as well as 1,4-dioxane, 16 categories were developed to evaluate a) serious effects on human health, b) serious effects on the environment and c) additional effects. 1,4-dioxane has recently been proposed to be classified as Carcinogenic 1B by the Committee for Risk Assessment (RAC). The aim was to enable an objective and scientifically justified conclusion that these classes of substances have an equivalent level of concern for the environment and human health.

Results

In all of the categories related to human health, the environment and other effects, the PMT/vPvM case study substances exhibited comparable effects to PBT/vPvB substances. A difference in the human and environmental exposure pathways of PMT/vPvM and PBT/vPvB substances exists as they vary temporally and spatially. However, effects and impacts are similar, with PMT/vPvM substances potentially accumulating in (semi-)closed drinking water cycles and pristine aquatic environments, and PBT/vPvB substances accumulating in humans and the food chain. Both PMT/vPvM and PBT/vPvB substances share the common difficulty that long term and long-range transport and risk of exposure is very difficult to determine in advance and with sufficient accuracy.

Conclusion

The registration process of substances under REACH should reflect that PMT/vPvM substances pose an equivalent level of concern to PBT/vPvB substances.

Từ khóa


Tài liệu tham khảo

Arp HPH, Hale SE (2019) REACH: Improvement of guidance methods for the identification and evaluation of PM/PMT substances. UBA TEXTE 126/2019. German Environment Agency (UBA), Dessau-Roßlau, Germany. ISBN: 1862–4804. 130 pages. https://www.umweltbundesamt.de/en/publikationen/reach-improvement-of-guidance-methods-for-the

Neumann M, Schliebner I (2019) Protecting the sources of our drinking water: The criteria for identifying persistent, mobile and toxic (PMT) substances and very persistent and very mobile (vPvM) substances under EU Regulation REACH

(EC) No 1907/2006. UBA TEXTE 127/2019. Ger Environ Agency (UBA), Dessau-Roßlau, Ger ISBN 1862-4804 87.

Shrestha P, Junker T, Fenner K et al (2016) Simulation studies to explore biodegradation in water-sediment systems: from OECD 308 to OECD 309. Environ Sci Technol 50:6856–6864. https://doi.org/10.1021/acs.est.6b01095

Matthies M, Solomon K, Vighi M et al (2016) The origin and evolution of assessment criteria for persistent, bioaccumulative and toxic (PBT) chemicals and persistent organic pollutants (POPs). Environ Sci Process Impacts 18:1114–1128. https://doi.org/10.1039/c6em00311g

Hale SE, Arp HPH, Schliebner I, Neumann M (2020) Whats in a name: persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances. Accept Environ Sci Technol. 32(1):1–1

Jin B, Huang C, Yu Y et al (2020) The need to adopt an international PMT strategy to protect drinking water resources. Environ Sci Technol 54:11651–11653

Rüdel H, Körner W, Letzel T et al (2020) Persistent, mobile and toxic substances in the environment: a spotlight on current research and regulatory activities. Environ Sci Eur 32:5

Bieber S, Greco G, Grosse S, Letzel T (2017) RPLC-HILIC and SFC with Mass Spectrometry: Polarity-Extended Organic Molecule Screening in Environmental (Water) Samples. Anal Chem 89:7907–7914. https://doi.org/10.1021/acs.analchem.7b00859

Schröder AH (1991) Polar, hydrophilic compounds in drinking water produced from surface water: determination by liquid chromatography-mass spectrometry. J Chromatogr 554:251–266

Knepper T, Sacher F, Lange F, Brauch H (1999) Detection of polar organic substances relevant for drinking water. Waste Manag 19:77–99

Reemtsma T, Berger U, Arp HPH et al (2016) Mind the gap: persistent and mobile organic compounds - water contaminants that slip through. Environ Sci Technol 50:10308–10315. https://doi.org/10.1021/acs.est.6b03338

Loos R, Gawlik BM, Locoro G et al (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157:561–568. https://doi.org/10.1016/j.envpol.2008.09.020

Neumann M, Schwarz M., Sättler D, et al (2015) A proposal for a chemical assessment concept for the protection of raw water resources under REACH. Extended Abstract for the Oral presentation at the 25th SETAC annual meeting.

Sjerps RMA, Vughs D, van Leerdam JA et al (2016) Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS. Water Res 93:254–264. https://doi.org/10.1016/j.watres.2016.02.034

van der Hoek JP, Bertelkamp C, Verliefde A, Singhal N (2014) Drinking water treatment technologies in Europe: state of the art–challenges–research needs. J Water Supply Res Technol 63:1

Stackelberg PE, Gibs J, Furlong ET, Meyer MT, Zaugg SD, Lippincott RL (2007) Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci Total Environ 377(255–272):377

Steinhäuser KG, Richter S (2006) Assessment and management of chemicals-how should persistent polar pollutants be regulated? Org Pollut Water Cycle Prop Occur Anal Environ Relev Polar Compd 311:1

Plumlee MH, Larabee J, Reinhard M (2008) Perfluorochemicals in water reuse. Chemosphere 72:1

Filipovic M, Berger U (2015) Are perfluoroalkyl acids in waste water treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation? Chemosphere 129:74–80

Beltrán-Martinavarro B, Peris-Vicente J, Mbla-Alegre MR et al (2013) Quantification of melamine in drinking water and wastewater by micellar liquid chromatography. J AOAC Int 96:870–874. https://doi.org/10.5740/jaoacint.12-248

Holm JV, Rugge K, Bjerg PL, Christensen TH (1995) Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grindsted, Denmark). Environ Sci Technol 29:1415–1420. https://doi.org/10.1021/es00005a039

Scheurer M, Nödler K, Freeling F et al (2017) Small, mobile, persistent: Trifluoroacetate in the water cycle – overlooked sources, pathways, and consequences for drinking water supply. Water Res 126:460–471. https://doi.org/10.1016/j.watres.2017.09.045

Zahn D, Neuwald IJ, Knepper TP (2020) Analysis of mobile chemicals in the aquatic environment—current capabilities, limitations and future perspectives. Anal Bioanal Chem 412:4763–4784. https://doi.org/10.1007/s00216-020-02520-z

Schulze S, Paschke H, Meier T et al (2020) A rapid method for quantification of persistent and mobile organic substances in water using supercritical fluid chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem 412:4941–4952. https://doi.org/10.1007/s00216-020-02722-5

Montes R, Rodil R, Placer L et al (2020) Applicability of mixed-mode chromatography for the simultaneous analysis of C1–C18 perfluoroalkylated substances. Anal Bioanal Chem 412:4849–4856. https://doi.org/10.1007/s00216-020-02434-w

Höcker O, Bader T, Schmidt TC et al (2020) Enrichment-free analysis of anionic micropollutants in the sub-ppb range in drinking water by capillary electrophoresis-high resolution mass spectrometry. Anal Bioanal Chem 412:4857–4865. https://doi.org/10.1007/s00216-020-02525-8

Arp HPH, Brown TN, Berger U, Hale SE (2017) Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility. Environ Sci Process Impacts 19:939–955. https://doi.org/10.1039/c7em00158d

Schulze S, Zahn D, Montes R et al (2019) Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Res 153:80–90. https://doi.org/10.1016/j.watres.2019.01.008

Posthuma L, Munthe J, van Gils J et al (2019) A holistic approach is key to protect water quality and monitor, assess and manage chemical pollution of European surface waters. Environ Sci Eur 31:1–5. https://doi.org/10.1186/s12302-019-0243-8

Goldenman G, Holland M, Lietzmann J, Meura L (2017) Study for the strategy for a non-toxic environment of the 7th Environment Action Programme Final Report. 1–132. https://doi.org/https://doi.org/10.2779/025

ECHA European Chemicals Agency Authorization List, Annex XIV of REACH. https://www.echa.europa.eu/authorisation-list

ECHA European Chemicals Agency (2011) Annex XIII Criteria for the identification of persistent, bioaccumulative and toxic substances, and very persistent and very bioaccumulative substances. https://reachonline.eu/reach/en/annex-xiii.html

ECHA European Chemicals Agency (2019) Annex XV report PROPOSAL FOR IDENTIFICATION OF A SUBSTANCE OF VERY HIGH CONCERN ON THE BASIS OF THE CRITERIA SET OUT IN REACH ARTICLE 57 Substance Name: Perfluorobutane sulfonic acid (PFBS) and its salts

ECHA (2019) AGREEMENT OF THE MEMBER STATE COMMITTEE ON THE IDENTIFICATION OF Perfluorobutane sulfonic acid and its salts AS SUBSTANCES OF VERY HIGH CONCERN. https://echa.europa.eu/documents/10162/ad9e2050-48b7-137f-22d0-2b4c692e9308

ECHA European Chemicals Agency (2019) Annex XV report PROPOSAL FOR IDENTIFICATION OF A SUBSTANCE OF VERY HIGH CONCERN ON THE BASIS OF THE CRITERIA SET OUT IN REACH ARTICLE 57 Substance Name(s): 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid, its salts and its acyl halides. https://echa.europa.eu/documents/10162/41086906-eeb6-a963-f0b9-af1d0e27efc2

ChemSec Substitute It Now list (SINList). https://sinlist.chemsec.org/

ECHA European Chemicals Agency Identification of substances as SVHCs due to equivalent level of concern to CMRs (Article 57(f)) – sensitisers as an example. https://echa.europa.eu/documents/10162/13657/svhc_art_57f_sensitisers_en.pdf

Pesudo LQ, Aschberger K (2015) Identification of Substances of Very High Concern (SVHC) under the “equivalent level of concern” route (REACH Article 57(f)) – neurotoxicants and immunotoxicants as examples. https://publications.jrc.ec.europa.eu/repository/bitstream/JRC96572/jrc96572-identification%20svhc%20reach%20article%2057f.pdf

Ahrens L, Bundschuh M (2014) Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review. Environ Toxicol Chem 33:1921–1929. https://doi.org/10.1002/etc.2663

OECD (2018) Environment directorate joint meeting of the chemicals committee and the working party on chemicals, pesticides and biotechnology toward a new comprehensive global database of per-and polyfluoroalkyl substances (PFASs): summary report on updating the OECD. https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV-JM-MONO(2018)7&doclanguage=en

Buck R, Franklin J, Berger U et al (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7:513–541

Vierke L, Staude C, Biegel-Engler A et al (2012) Perfluorooctanoic acid (PFOA)-main concerns and regulatory developments in Europe from an environmental point of view. Environ Sci Eur 24:1–11. https://doi.org/10.1186/2190-4715-24-16

Knutsen H, Mæhlum T, Haarstad K et al (2019) Leachate emissions of short- And long-chain per- And polyfluoralkyl substances (PFASs) from various Norwegian landfills. Environ Sci Process Impacts 21:1970–1979. https://doi.org/10.1039/c9em00170k

Goldenman G, Fernandes M, Holland M et al (2019). The cost of inaction A socioeconomic analysis of environmental and health impacts linked to exposure to PFAS. https://doi.org/10.6027/TN2019-516

Xiao F (2017) Emerging poly- and perfluoroalkyl substances in the aquatic environment: a review of current literature. Water Res 124:482–495. https://doi.org/10.1016/j.watres.2017.07.024

Strynar M, Dagnino S, McMahen R, Liang S, Lindstrom A, Andersen E, McMillan L, Thurman M, Ferrer I, Ball C (2015) Identification of novel per- fluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS). Environ Sci Technol 49:11622–11630

Heydebreck F, Tang JH, Xie ZY, Ebinghaus R (2015) Alternative and Legacy Perfluoroalkyl Substances: differences between European and Chinese River/Estuary Systems. Environ Sci Technol 49:8386–8395

Sun, M.; Arevalo, E.; Strynar, M.; Lindstrom, A.; Richardson M., Kearns, B.; Pickett, A.; Smith, C.; Knappe DRU (2016) Legacy and Emerging Perfluoroalkyl Substances Are Important Drinking Water Contaminants in the Cape Fear River Watershed of North Carolina. Environ Sci Technol Lett 3:

Gebbink WA, Van Asseldonk L, Van Leeuwen SPJ (2017) Presence of Emerging Per- and Polyfluoroalkyl Substances (PFASs) in river and drinking water near a fluorochemical production plant in the Netherlands. Environ Sci Technol 51:11057–11065. https://doi.org/10.1021/acs.est.7b02488

ECHA European Chemicals Agency (2019) Committee for Risk Assessment RAC Annex 1 Background document to the Opinion proposing harmonised classification and labelling at EU level of 1,4-dioxane. https://echa.europa.eu/documents/10162/2b8d3dc0-76f1-f749-a621-a12441049a14

Anderson RH, Anderson JK, Bower PA (2012) Co-Occurrence of 1 , 4-Dioxane with Trichloroethylene in Chlorinated Solvent Groundwater Plumes at US Air Force Installations : Fact or Fiction. 8:731–737. https://doi.org/https://doi.org/10.1002/ieam.1306

Adamson DT, Piña EA, Cartwright AE et al (2017) 1, 4-Dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule. Sci Total Environ 596–597:236–245. https://doi.org/10.1016/j.scitotenv.2017.04.085

Adamson DT, Mahendra S, Walker KL, et al (2014) A Multisite Survey To Identify the Scale of the 1,4-Dioxane Problem at Contaminated Groundwater Sites. 1:254–258

Abe A (1999) Distribution of 1 , 4-dioxane in relation to possible sources in the water environment. 227:41–47

Karges U, Becker J, Püttmann W (2018) 1, 4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume. Sci Total Environ 619–620:712–720. https://doi.org/10.1016/j.scitotenv.2017.11.043

Kasai T, Kano H, Umeda Y et al (2009) Two-year inhalation study of carcinogenicity and chronic toxicity of 1,4-dioxane in male rats 2-yr inhalation study of 1,4-dioxane in rats. Inhal Toxicol 21:889–897. https://doi.org/10.1080/08958370802629610

Kano H, Umeda Y, Saito M et al (2008) Thirteen-week oral toxicity of 1, 4-dioxane in rats and mice. J Toxicol Sci 33:141–153

McElroy A, Hyman M, Knappe D (2019) 1, 4-Dioxane in drinking water: emerging for 40 years and still unregulated. Curr Opin Environ Sci Heal 7:117–125

Zenker MJ, Borden RC, Barlaz M (2003) Occurrence and Treatment of 1,4Dioxane in Aqueous Environments Comparison of Field Measurements to Methane Emissions Models at a New Landfill View project. liebertpub.com 20:423–432. https://doi.org/https://doi.org/10.1089/109287503768335913

Isaacson C, Mohr TKG, Field JA (2006) Quantitative determination of 1,4-dioxane and tetrahydrofuran in groundwater by solid phase extraction GC/MS/MS. Environ Sci Technol 40:7305–7311. https://doi.org/10.1021/es0615270

Mohr TKG (2010) Environmental Investigation and Remediation: 1, 4-Dioxane and other Solvent Stabilizers. In: CRC Press Taylor Fr. Group,. https://www.amazon.com/Environmental-Investigation-Remediation-4-Dioxane-Stabilizers/dp/1566706629. Accessed 12 Aug 2020

Eckhardt A (2018) Positive Trends Emerge in Reducing Exposure to 1,4-Dioxane. J Am Water Works Assoc 110:54–59. https://doi.org/10.1002/awwa.1116

Stepien DK, Regnery J, Merz C, Püttmann W (2013) Behavior of organophosphates and hydrophilic ethers during bank fi ltration and their potential application as organic tracers. A fi eld study from the Oderbruch. Germany Sci Total Environ 458–460:150–159. https://doi.org/10.1016/j.scitotenv.2013.04.020

Godri KJ, Kim J, Peccia J et al (2019) 1, 4-Dioxane as an emerging water contaminant : State of the science and evaluation of research needs. Sci Total Environ 690:853–866. https://doi.org/10.1016/j.scitotenv.2019.06.443

Schoonenberg Kegel F, Rietman BM, Verliefde ARD (2010) Reverse osmosis followed by activated carbon filtration for efficient removal of organic micropollutants from river bank filtrate. Water Sci Technol 61:2603–2610. https://doi.org/10.2166/wst.2010.166

Carson R (1962) Silent Spring. Fawcett Crest

Jensen S, Johnels AG, Olsson M, Otterlind G (1969) DDT and PCB in marine animals from Swedish waters. Nature 224:247–250. https://doi.org/10.1038/224247a0

ECHA European Chemicals Agency (2012) Guidance on information requirements and chemical safety assessment Chapter R . 11 : PBT Assessment November 2012. https://echa.europa.eu/documents/10162/13632/information_requirements_r11_en.pdf 1–99

Persson LM, Breitholtz M, Cousins IT et al (2013) Confronting unknown planetary boundary threats from chemical pollution. Environ Sci Technol 47:12619–12622. https://doi.org/10.1021/es402501c

Brown TN, Wania F (2008) Screening chemicals for the potential to be persistent organic pollutants: A case study of Arctic contaminants. Environ Sci Technol 42:5202–5209. https://doi.org/10.1021/es8004514

Spyraki M, Arena M, Ries F, et al (2020) MOTION FOR A RESOLUTION further to Question for Oral Answer B9–0013/2020 pursuant to Rule 136(5) of the Rules of Procedure on the Chemicals Strategy for Sustainability (2020/2531(RSP))