Persistent Luminescence in Eu2+-Doped Compounds: A Review

Materials - Tập 3 Số 4 - Trang 2536-2566
Koen Van den Eeckhout1, Philippe F. Smet1, Dirk Poelman1
1Lumilab, Department of Solid State Sciences, Ghent University, Krijgslaan 281S1, 9000 Gent, Belgium

Tóm tắt

In 1996, Matsuzawa et al. reported on the extremely long-lasting afterglow of SrAl2O4:Eu2+ codoped with Dy3+ ions, which was more than 10-times brighter than the previously widely used ZnS:Cu,Co. Since then, research for stable and efficient persistent phosphors has continuously gained popularity. However, even today - almost 15 years after the discovery of SrAl2O4:Eu2+, Dy3+ - the number of persistent luminescent materials is still relatively low. Furthermore, the mechanism behind this phenomenon is still unclear. Although most authors agree on the general features, such as the existence of long-lived trap levels, many details are still shrouded in mystery. In this review, we present an overview of the important classes of known persistent luminescent materials based on Eu2+-emission and how they were prepared, and we take a closer look at the models and mechanisms that have been suggested to explain bright afterglow in various compounds.

Từ khóa


Tài liệu tham khảo

Harvey, E.N. (1957). A History of Luminescence from the Earliest Times until 1900, American Philosophical Society.

Hoogenstraaten, 1953, Some properties of zinc sulfide activated with copper and cobalt, J. Electrochem. Soc., 100, 366, 10.1149/1.2781134

Yen, W.M., Shionoya, S., and Yamamoto, H. (2007). Phosphor Handbook, CRC Press/Taylor and Francis. [2nd ed.].

Wang, 2002, Concentration quenching of Eu2+ in SrO·Al2O3:Eu2+ phosphor, J. Lumines., 97, 1, 10.1016/S0022-2313(01)00413-6

Matsuzawa, 1996, A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+, J. Electrochem. Soc., 143, 2670, 10.1149/1.1837067

Abbruscato, 1971, Optical and electrical properties of SrAl2O4:Eu2+, J. Electrochem. Soc., 118, 930, 10.1149/1.2408226

Takasaki, 1996, Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor, J. Ceram. Soc. Jpn., 104, 322, 10.2109/jcersj.104.322

Lin, 2001, Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor, J. Mater. Sci. Lett., 20, 1505, 10.1023/A:1017930630889

Aitasalo, 2001, Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates, J. Lumines., 94–95, 59, 10.1016/S0022-2313(01)00279-4

Dorenbos, 2005, Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds, J. Electrochem. Soc., 152, H107, 10.1149/1.1926652

Blasse, G., and Grabmaier, B.C. (1994). Luminescent Materials, Springer-Verlag.

Poelman, 2009, Measured luminance and visual appearance of multi-color persistent phosphors, Opt. Express, 17, 358, 10.1364/OE.17.000358

Clabau, 2007, On the phosphorescence mechanism in SrAl2O4:Eu2+ and its codoped derivatives, Solid State Sci., 9, 608, 10.1016/j.solidstatesciences.2007.03.020

Schulze, 1981, Zur Verbindungsbildung von MeO: M2O3. IV. Zur Struktur von monoklinem SrAl2O4, Z. Anorg. Allg. Chem., 475, 205, 10.1002/zaac.19814750423

Lange, H. (1966). Luminescent Europium Activated Strontium Aluminate. (3,294,699), US patent.

Blasse, 1968, Fluorescence of Eu2+-activated alkaline-earth aluminates, Philips Res. Rep., 23, 201

Katsumata, 1997, Effects of composition on the long phosphorescent SrAl2O4:Eu2+, Dy3+ phosphor crystals, J. Electrochem. Soc., 144, L243, 10.1149/1.1837931

Jungner, 2001, Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+, J. Alloy. Compd., 323–324, 326

Katsumata, 1998, Growth and characteristics of long persistent SrAl2O4- and CaAl2O4-based phosphor crystals by a floating zone technique, J. Cryst. Growth, 183, 361, 10.1016/S0022-0248(97)00308-4

Lin, 2003, Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors, J. Eur. Ceram. Soc., 23, 175, 10.1016/S0955-2219(02)00080-8

Lin, 2001, The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3, Mater. Chem. Phys., 70, 156, 10.1016/S0254-0584(00)00500-9

Sakai, 1999, Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals, J. Lumines., 85, 149, 10.1016/S0022-2313(99)00061-7

Lin, 2001, Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties, Mater. Lett., 51, 14, 10.1016/S0167-577X(01)00257-9

Lin, 2002, Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors, Appl. Phys. Lett., 81, 996, 10.1063/1.1490631

Nakazawa, 2006, Mechanism of the persistent phosphorescence in Sr4Al14O25:Eu and SrAl2O4:Eu codoped with rare earth ions, J. Appl. Phys., 100, 113113, 10.1063/1.2397284

Katsumata, 1998, Characteristics of strontium aluminate crystals used for long-duration phosphors, J. Am. Ceram. Soc., 81, 413, 10.1111/j.1151-2916.1998.tb02349.x

Preethi, 2004, SrAl4O7:Eu2+ nanocrystals: synthesis and fluorescence properties, J. Phys. D-Appl. Phys., 37, 2664, 10.1088/0022-3727/37/19/009

Zhang, 2003, Preparation and characterization of a new long afterglow indigo phosphor Ca12Al14O33:Nd,Eu, Mater. Lett., 57, 4315, 10.1016/S0167-577X(03)00309-4

Chang, 2010, Photoluminescence and afterglow behavior of Eu2+, Dy3+ and Eu3+, Dy3+ in Sr3Al2O6 matrix, J. Lumines., 130, 347, 10.1016/j.jlumin.2009.09.016

Zhang, 2007, Rapid formation of red long afterglow phosphor Sr3Al2O6:Eu2+, Dy3+ by microwave irradiation, Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 136, 159, 10.1016/j.mseb.2006.09.018

Wanjun, 2009, Luminescence studies on SrMgAl10O17:Eu,Dy phosphor crystals, Opt. Laser Technol., 41, 81, 10.1016/j.optlastec.2008.03.009

Bechtel, 2003, Blue emitting BaMgAl10O17:Eu with a blue body color, J. Lumines., 104, 137, 10.1016/S0022-2313(03)00010-3

Aitasalo, 2004, Eu2+ doped calcium aluminates prepared by alternative low temperature routes, Opt. Mater., 26, 113, 10.1016/j.optmat.2003.11.007

Chen, 2008, Modification on luminescent properties of SrAl2O4:Eu2+,Dy3+ phosphor by Yb3+ ions doping, J. Lumines., 128, 1180, 10.1016/j.jlumin.2007.11.094

Peng, 2004, Combustion synthesis and photoluminescence of SrAl2O4:Eu,Dy phosphor nanoparticles, Mater. Lett., 58, 352, 10.1016/S0167-577X(03)00499-3

Qiu, 2007, Combustion synthesis of long-persistent luminescent MAl2O4: Eu2+, R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research, Acta Mater., 55, 2615, 10.1016/j.actamat.2006.12.018

Zhao, 2007, Synthesis of CaAl2O4:Eu,Nd long persistent phosphor by combustion processes and its optical properties, Mater. Lett., 61, 3673, 10.1016/j.matlet.2006.12.015

Geng, 2002, Synthesis of long afterglow SrAl2O4: Eu2+, Dy3+ phosphors through microwave route, J. Mater. Synth. Proces., 10, 245, 10.1023/A:1023038008386

Jia, 1999, Crystal growth and characterization of Eu2+, Dy3+ : SrAl2O4 and Eu2+, Nd3+ : CaAl2O4 by the LHPG method, J. Cryst. Growth, 200, 179, 10.1016/S0022-0248(98)01099-9

Aitasalo, 2002, Sol-gel processed Eu2+-doped alkaline earth aluminates, J. Alloy. Compd., 341, 76, 10.1016/S0925-8388(02)00068-3

Chen, 2001, Sol-gel synthesis and the effect of boron addition on the phosphorescent properties of SrAl2O4:Eu2+,Dy3+ phosphors, J. Mater. Res., 16, 644, 10.1557/JMR.2001.0122

Peng, 2004, Synthesis of SrAl2O4:Eu, Dy phosphor nanometer powders by sol-gel processes and its optical properties, Mater. Chem. Phys., 85, 68, 10.1016/j.matchemphys.2003.12.001

Tang, 2000, Luminescent properties of SrAl2O4: Eu, Dy material prepared by the gel method, J. Eur. Ceram. Soc., 20, 2129, 10.1016/S0955-2219(00)00092-3

Nag, 2004, The mechanism of long phosphorescence of SrAl2-xBxO4 (0 <x <0.2) and Sr4Al14-xBxO25 (0.1 <x <0.4) co-doped with Eu2+ and Dy3+, Mater. Res. Bull., 39, 331, 10.1016/j.materresbull.2003.11.007

Nag, 2003, Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4:Eu, Dy, J. Alloy. Compd., 354, 221, 10.1016/S0925-8388(03)00009-4

Suriyamurthy, 2008, Effects of non-stoichiometry and substitution on photoluminescence and afterglow luminescence of Sr4Al14O25:Eu2+, Dy3+ phosphor, J. Lumines., 128, 1809, 10.1016/j.jlumin.2008.05.001

Yuan, 2004, Effect of composition on the luminescent properties of Sr4Al14O25: Eu2+, Dy3+ phosphors, J. Alloy. Compd., 377, 268, 10.1016/j.jallcom.2004.01.063

Akiyama, 1998, Intense visible light emission from Sr3Al2O6:Eu,Dy, Appl. Phys. Lett., 73, 3046, 10.1063/1.122667

Zhang, 2008, The new red luminescent Sr3Al2O6:Eu2+ phosphor powders synthesized via sol-gel route by microwave-assisted, J. Alloy. Compd., 456, 216, 10.1016/j.jallcom.2007.02.004

Lin, 2003, Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors, Mater. Chem. Phys., 82, 860, 10.1016/j.matchemphys.2003.07.015

Liu, 2005, The trap states in the Sr2MgSi2O7 and (Sr,Ca)MgSi2O7 long afterglow phosphor activated by Eu2+ and Dy3+, J. Alloy. Compd., 387, 65, 10.1016/j.jallcom.2004.06.061

Aitasalo, 2007, Persistent luminescence and synchrotron radiation study of the Ca2MgSi2O7:Eu2+,R3+ materials, Radiat. Meas., 42, 644, 10.1016/j.radmeas.2007.01.058

Blasse, 1968, Fluorescence of Eu2+-activated silicates, Philips Res. Rep., 23, 189

Jiang, 2003, Luminescent properties of CaMgSi2O6 and Ca2MgSi2O7 phosphors activated by Eu2+, Dy3+ and Nd3+, J. Alloy. Compd., 360, 193, 10.1016/S0925-8388(03)00361-X

Aitasalo, 2005, Luminescence properties of Eu2+ doped dibarium magnesium disilicate, Ba2MgSi2O7:Eu2+, Ceram.-Silikáty, 49, 58

Aitasalo, 2007, Persistent luminescence of Ba2MgSi2O7:Eu2+, J. Lumines., 122–123, 110, 10.1016/j.jlumin.2006.01.112

Lin, 2003, Luminescence of Eu2+ and Dy3+ activated R3MgSi2O8-based (R = Ca, Sr, Ba) phosphors, J. Alloy. Compd., 348, 76, 10.1016/S0925-8388(02)00796-X

Moztarzadeh, 2005, Effects of dopant concentrations on phosphorescence properties of Eu/Dy-doped Sr3MgSi2O8, J. Lumines., 114, 131, 10.1016/j.jlumin.2004.12.012

Lin, 2001, Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phosphor, J. Eur. Ceram. Soc., 21, 683, 10.1016/S0955-2219(00)00252-1

Jiang, 2004, Luminescent properties of CaMgSi2O6-based phosphors co-doped with different rare earth ions, J. Alloy. Compd., 377, 211, 10.1016/j.jallcom.2004.01.024

Kuang, 2005, Blue-emitting long-lasting phosphor, Sr3Al10SiO20:Eu2+,Ho3+, Solid State Commun., 136, 6, 10.1016/j.ssc.2005.06.030

Kuang, 2006, Effects of RE3+ as a co-dopant in blue-emitting long-lasting phosphors, Sr3Al10SiO20 : Eu2+, J. Mater. Sci., 41, 5500, 10.1007/s10853-006-0244-z

Clabau, 2008, Fluorescence and phosphorescence properties of the low temperature forms of the MAl2Si2O8:Eu2+ (M = Ca, Sr, Ba) compounds, J. Solid State Chem., 181, 1456, 10.1016/j.jssc.2008.03.011

Wang, 2004, Preparation of Eu2+ and Dy3+ co-activated CaAl2Si2O8-based phosphor and its optical properties, Mater. Lett., 58, 3308, 10.1016/j.matlet.2004.06.024

Ding, 2009, Photoluminescence of Eu single doped and Eu/Dy codoped Sr2Al2SiO7 phosphors with long persistence, J. Lumines., 129, 294, 10.1016/j.jlumin.2008.10.009

Jiang, 2004, A new long persistent blue-emitting Sr2ZnSi2O7:Eu2+,Dy3+ prepared by sol-gel method, Mater. Lett., 58, 1825, 10.1016/j.matlet.2003.11.014

Wang, 2005, Crystal size dependence of the persistent phosphorescence in Sr2ZnSi2O7:Eu2+,Dy3+, Microelectron. J., 36, 546, 10.1016/j.mejo.2005.02.067

Lakshminarasimhan, 2008, Luminescence and afterglow in Sr2SiO4:Eu2+,RE3+ [RE = Ce, Nd, Sm and Dy] phosphors—Role of co-dopants in search for afterglow, Mater. Res. Bull., 43, 2946, 10.1016/j.materresbull.2007.12.005

Ji, 2007, A new phosphor with flower-like structure and luminescent properties of Sr2MgSi2O7:Eu2+,Dy3+ long afterglow materials by sol–gel method, J. Sol-Gel Sci. Technol., 44, 133, 10.1007/s10971-007-1614-y

Pan, 2008, Enhanced luminescent properties of long-persistent Sr2MgSi2O7:Eu2+, Dy3+ phosphor prepared by the co-precipitation method, J. Lumines., 128, 1975, 10.1016/j.jlumin.2008.06.009

Song, 2008, Synthesis of Sr2MgSi2O7:Eu, Dy and Sr2MgSi2O7:Eu, Dy, Nd by a modified solid-state reaction and their luminescent properties, J. Alloy. Compd., 458, 564, 10.1016/j.jallcom.2007.04.261

Xu, 2008, Combustion synthesis and photoluminescence of Sr2MgSi2O7:Eu,Dy long lasting phosphor nanoparticles, Ceram. Int., 34, 2117, 10.1016/j.ceramint.2007.08.012

Toda, 2002, Synthesis and characterization of new long persistent phosphor, J. Ceram. Soc. Jpn., 110, 283, 10.2109/jcersj.110.283

Fei, 2005, Luminescent properties of Sr2MgSi2O7 and Ca2MgSi2O7 long lasting phosphors activated by Eu2+, Dy3+, J. Alloy. Compd., 390, 133, 10.1016/j.jallcom.2004.06.096

Jiang, 2004, Luminescent properties of Ca2MgSi2O7 phosphor activated by Eu2+, Dy3+ and Nd3+, Opt. Mater., 27, 51, 10.1016/j.optmat.2004.02.019

Dorenbos, 2003, Energy of the first 4f7-->4f65d transition of Eu2+ in inorganic compounds, J. Lumines., 104, 239, 10.1016/S0022-2313(03)00078-4

Jia, 2000, Improvement of persistent phosphorescence of Ca0.9Sr0.1S : Bi3+ by codoping Tm3+, J. Lumines., 91, 59, 10.1016/S0022-2313(00)00208-8

Jia, 2000, Trapping processes in CaS:Eu2+, Tm3+, J. Appl. Phys., 88, 3402, 10.1063/1.1286419

Jia, 2000, Trapping Centers in CaS:Bi3+ and CaS:Eu2+,Tm3+, J. Electrochem. Soc., 147, 386, 10.1149/1.1393205

Jia, 2006, Enhancement of long-persistence by Ce co-doping in CaS:Eu2+,Tm3+ red phosphor, J. Electrochem. Soc., 153, H198, 10.1149/1.2337087

Guo, 2007, Influence of co-doping different rare earth ions on CaGa2S4: Eu2+, RE3+ (RE = Ln) phosphors, J. Phys. Chem. Solids, 68, 217, 10.1016/j.jpcs.2006.10.013

Guo, 2004, Luminescent properties of Eu2+ and Ho3+ co-doped CaGa2S4 phosphor, Phys. Status Solidi A-Appl. Mat., 201, 1588, 10.1002/pssa.200306800

Najafov, 2002, Effect of Ce co-doping on CaGa2S4:Eu phosphor: II. Thermoluminescence, Jpn. J. Appl. Phys., 41, 2058, 10.1143/JJAP.41.2058

Smet, 2009, Red persistent luminescence in Ca2SiS4:Eu,Nd, J. Electrochem. Soc., 156, H243, 10.1149/1.3073551

Pang, 2009, A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+,Y3+, J. Phys. Chem. Solids, 70, 303, 10.1016/j.jpcs.2008.10.016

Pang, 2009, Luminescent properties of a new blue long-lasting phosphor Ca2P2O7:Eu2+,Y3+, Mater. Chem. Phys., 113, 215, 10.1016/j.matchemphys.2008.07.061

Liu, 2006, Redshift phenomenon of the excitation light of long life emission phosphor, Appl. Phys. Lett., 88, 241107, 10.1063/1.2213184

Miyamoto, 2009, An orange-emitting, long-persistent phosphor, Ca2Si5N8:Eu2+,Tm3+, J. Electrochem. Soc., 156, J235, 10.1149/1.3153114

Smet, 2009, Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+, J. Lumines., 129, 1140, 10.1016/j.jlumin.2009.05.007

Li, 2006, A new blue phosphorescent glass-ceramic: Rare-earth-doped calcium aluminoborate, J. Alloy. Compd., 408–412, 875, 10.1016/j.jallcom.2004.12.062

Zhang, 2006, Long lasting phosphorescence in Eu2+ and Ce3+ co-doped strontium borate glasses, J. Rare Earths, 24, 196, 10.1016/S1002-0721(07)60358-5

Hao, 2007, White light emitting diode by using α-Ca2P2O7:Eu2+,Mn2+ phosphor, Appl. Phys. Lett., 90, 261113, 10.1063/1.2752725

Li, 2006, Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors, J. Alloy. Compd., 417, 273, 10.1016/j.jallcom.2005.09.041

Chen, R., and McKeever, S.W.S. (1997). Theory of Thermoluminescence and Related Phenomena, World Scientific.

McKeever, S.W.S. (1985). Thermoluminescence of Solids, Cambridge University Press.

McKeever, S.W.S., Moscovitch, M., and Townsend, P.D. (1995). Thermoluminescence Dosimetry Materials: Properties and Uses, Nuclear Technology Pub.

Urbach, 1930, Zur Lumineszenz der Alkalihalogenide: II. Messungmethoden, Sitzungsberichte Akademie der Wissenshaften in Wien, 139, 363

Randall, 1945, Phosphorescence and electron traps. I. The study of trap distributions, P. Roy. Soc. Lond. A, 184, 365, 10.1098/rspa.1945.0024

Randall, 1945, Phosphorescence and electron traps. II. The interpretation of long-period phosphorescence, P. Roy. Soc. Lond. A, 184, 390, 10.1098/rspa.1945.0025

Garlick, 1948, The electron trap mechanism of luminescence in sulphide and silicate phosphors, Proc. Phys. Soc., 60, 574, 10.1088/0959-5309/60/6/308

Bos, 2006, Theory of thermoluminescence, Radiat. Meas., 41, S45, 10.1016/j.radmeas.2007.01.003

Chen, 1969, On the calculation of activation energies and frequency factors from glow curves, J. Appl. Phys., 40, 570, 10.1063/1.1657437

Hoogenstraaten, 1958, Electron traps in ZnS phosphors, Philips Res. Rep., 13, 515

Chen, 1969, Glow curves with general order kinetics, J. Electrochem. Soc., 116, 1254, 10.1149/1.2412291

Chung, K.S. (2003). TL Glow Curve Analyzer v0.9.6, Korea Atomic Energy Research Institute and Gyeongsang National University.

Chung, 2005, A computer program for the deconvolution of thermoluminescence glow curves, Radiat. Prot. Dosim., 115, 343, 10.1093/rpd/nci073

Thomas, 1988, On the luminescence characteristics of cerium and copper doped barium sulfide phosphor, Solid State Commun., 68, 821, 10.1016/0038-1098(88)91025-3

Bube, 1950, Luminescence and trapping in zinc sulfide phosphors with and without copper activator, Phys. Rev., 80, 655, 10.1103/PhysRev.80.655

Paulose, 2007, Relaxation kinetics of Sm: Ce-doped CaS phosphors, J. Lumines., 127, 583, 10.1016/j.jlumin.2007.03.006

Nakazawa, 1984, A new method for the characterization of traps in luminescent materials, Jpn. J. Appl. Phys. - Lett., 23, L755, 10.1143/JJAP.23.L755

Aitasalo, 2004, Effect of temperature on the luminescence processes of SrAl2O4:Eu2+, Radiat. Meas., 38, 727, 10.1016/j.radmeas.2004.01.031

Chernov, 2008, Persistent luminescence dosimetric properties of UV-irradiated SrAl2O4:Eu2+, Dy3+ phosphor, J. Lumines., 128, 173, 10.1016/j.jlumin.2007.07.006

Nakazawa, 1997, Traps in SrAl2O4:Eu2+ phosphor with rare-earth ion doping, J. Lumines., 72–74, 236, 10.1016/S0022-2313(97)00043-4

Aitasalo, 2006, Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+, J. Phys. Chem. B, 110, 4589, 10.1021/jp057185m

Jia, 2007, Long persistent alkali-earth silicate phosphors doped with Eu2+,Nd3+, J. Appl. Phys., 101, 023520, 10.1063/1.2409767

Jia, 1999, Photo-stimulated luminescence in SrAl2O4 : Eu2+,Dy3+ single crystal fibers, J. Lumines., 83–84, 465, 10.1016/S0022-2313(99)00145-3

Jia, 1998, Phosphorescent dynamics in SrAl2O4: Eu2+, Dy3+ single crystal fibers, J. Lumines., 76–77, 424, 10.1016/S0022-2313(97)00230-5

Yuan, 2000, The long-persistent photoconductivity of SrAl2O4:Eu2+, Dy3+ single crystals, J. Electrochem. Soc., 147, 3154, 10.1149/1.1393875

Kato, 1999, Thermoluminescence properties of SrAl2O4:Eu sputtered films with long phosphorescence, J. Lumines., 82, 213, 10.1016/S0022-2313(99)00036-8

Yamamoto, 1997, Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+, J. Lumines., 72–74, 287, 10.1016/S0022-2313(97)00012-4

Nakamura, 2001, High frequency EPR investigations of gadolinium(III)-doped strontium aluminates, Phys. Chem. Chem. Phys., 3, 1721, 10.1039/b008251l

Aitasalo, 2003, Persistent luminescence phenomena in materials doped with rare earth ions, J. Solid State Chem., 171, 114, 10.1016/S0022-4596(02)00194-9

Sietz, F., and Turnbull, D. (1956). Solid State Phys., Academic Press.

Palilla, 1968, Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium, J. Electrochem. Soc., 115, 642, 10.1149/1.2411379

Dorenbos, 2004, Locating lanthanide impurity levels in the forbidden band of host crystals, J. Lumines., 108, 301, 10.1016/j.jlumin.2004.01.064

Dorenbos, 2005, Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+;Dy3+, Phys. Status Solidi B-Basic Solid State Phys., 242, R7, 10.1002/pssb.200409080

Dorenbos, 2003, Systematic behaviour in trivalent lanthanide charge transfer energies, J. Phys.-Condens. Matter, 15, 8417, 10.1088/0953-8984/15/49/018

Clabau, 2005, Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+, Chem. Mat., 17, 3904, 10.1021/cm050763r

Clabau, 2006, Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration, Chem. Mater., 18, 3212, 10.1021/cm052728q

Qiu, 1998, Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses, J. Phys. Chem. Solids, 59, 1521, 10.1016/S0022-3697(98)00070-5

Qi, 2004, The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors, Phys. Status Solidi A-Appl. Mat., 201, 3109, 10.1002/pssa.200406873

Carlson, 2009, X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials, Opt. Mater., 31, 1877, 10.1016/j.optmat.2008.12.020

Aitasalo, 2004, Role of defect states in persistent luminescence materials, J. Alloy. Compd., 374, 56, 10.1016/j.jallcom.2003.11.064

Bos, 2008, Lanthanide energy levels in YPO4, Radiat. Meas., 43, 222, 10.1016/j.radmeas.2007.10.042

Jia, 2003, Charging curves and excitation spectrum of long persistent phosphor SrAl2O4:Eu2+, Dy3+, Opt. Mater., 22, 65, 10.1016/S0925-3467(02)00241-0

2009, Recent developments in the field of inorganic phosphors, Angew. Chem. Int. Ed., 48, 3572, 10.1002/anie.200804005

Schubert, E.F. (2006). Light-Emitting Diodes, Cambridge University Press. [2nd ed.].

Hong, 2007, Eu3+ red long afterglow in Y2O2S:Ti, Eu phosphor through afterglow energy transfer, J. Lumines., 124, 127, 10.1016/j.jlumin.2006.02.008

Wang, 2003, Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor, Mater. Chem. Phys., 80, 1, 10.1016/S0254-0584(02)00097-4

Ye, 2007, Mn2+ activated red long persistent phosphors in BaMg2Si2O7, J. Lumines., 122–123, 914, 10.1016/j.jlumin.2006.01.325

Born, M., and Wolf, E. (2003). Principles of Optics; Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, Cambridge University Press. [2nd ed.].

Rea, 2004, A proposed unified system of photometry, Lighting Res. Technol., 36, 85, 10.1191/1365782804li114oa

Stockman, 2006, Into the twilight zone: the complexities of mesopic vision and luminous efficiency, Opht. Phys. Opt., 26, 225, 10.1111/j.1475-1313.2006.00325.x

Saito, 2007, Full-color illumination that needs no electric power, Opt. Express, 15, 1621, 10.1364/OE.15.001621

Seguin, 2007, Nanoprobes with near-infrared persistent luminescence for in vivo imaging, Proc. Nat. Acad. Sci. USA, 104, 9266, 10.1073/pnas.0702427104