Persistent Inhibition of CYP3A4 by Ketoconazole in Modified Caco-2 Cells
Tóm tắt
Purpose. The intestinal metabolism of some CYP3A substrates canbe altered profoundly by co-administration of the potent inhibitor,ketoconazole. The present research was conducted to test the hypothesisthat, unlike the inhibition kinetics observed with isolated microsomes,inhibition of CYP3A4 by ketoconazole in an intestinal cell monolayeris time-dependent and slowly reversible.
Methods. Confluent, 1α,25-dihydroxy Vitamin D3-treated Caco-2 cellswere exposed to 1 μM ketoconazole for two hours (Phase I) and thenwashed three times with culture medium containing no inhibitor. Thiswas followed by a second incubation period (Phase II) that varied inthe composition of the apical and basolateral culture medium: Condition1, apical/basolateral differentiation medium (DM); Condition 2,apical/basolateral DM + basolateral 2g/dL Human Serum Albumin (HSA);Condition 3, apical/basolateral DM + apical/basolateral 2 g/dL HSA.After various lengths of time for the second phase (0 to 4 hours),both apical and basolateral medium were exchanged with fresh DM.Midazolam (6 μM) was included in the apical medium fordetermination of CYP3A4 activity (Phase III).
Results. Two-way ANOVA of the data revealed persistent inhibitionof CYP3A4 under Conditions 1 and 2 (p < 0.001). In contrast, cellstreated under Condition 3 exhibited rapid reversal of CYP3A4inhibition. The level of CYP3A4 activity observed was inversely correlatedwith the amount of ketoconazole remaining in the cell monolayer atthe end of Phase II.
Conclusions. These studies provide mechanistic evidence thatketoconazole can be sequestered into the intestinal mucosa after oraladministration, producing a persistent inhibition of first-pass CYP3A4 activity.
Tài liệu tham khảo
J. C. Kolars, K. S. Lown, P. Schmiedlin-Ren, M. Ghosh, C. Fang, S. A. Wrighton, R. M. Merion, and P. B. Watkins. CYP3A gene expression in human gut epithelium. Pharmacogenetics 4:247-259 (1994).
M. F. Paine, M. Khalighi, J. M. Fisher, D. D. Shen, K. L. Kunze, C. L. Marsh, J. D. Perkins, and K. E. Thummel. Characterization of inter-and intra-intestinal differences in human CYP3A-dependent metabolism. J. Pharmacol. Exp. Ther. 283:1552-1562 (1997).
M. F. Paine, D. D. Shen, K. L. Kunze, J. D. Perkins, C. L. Marsh, J. P. McVicar, D. M. Barr, B. S. Gillies, and K. E. Thummel. First-pass metabolism of midazolam by the human intestine. Clin. Pharmacol. Ther. 60:14-24 (1996).
K. E. Thummel, D. D. Shen, T. D. Podoll, K. L. Kunze, W. F. Trager, P. S. Hartwell, V. A. Raisys, C. L. Marsh, J. P. McVicar, D. M. Barr, J. D. Perkins, and R. L. Carithers Jr. Use of midazolam as a human cytochrome P450 3A probe: I. In vitro-in vivo correlations in liver transplant patients. J. Pharmacol. Exp. Ther. 271:549-556 (1994).
J. C. Kolars, W. M. Awni, R.M. Merion, and P. B. Watkins. First-pass metabolism of cyclosporin by the gut. Lancet 338:1488-1490 (1991).
D. K. Turgeon, D. P. Normolle, A. B. Leightman, T. M. Annesley, D. E. Smith, and P. B. Watkins. Erythromycin breath test predicts oral clearance of cyclosporine in kidney transplant recipients. Clin. Pharmacol. Ther. 52:471-478 (1992).
M. P. Ducharme, L. H. Warbasse, and D. J. Edwards. Disposition of intravenous and oral cyclosporine after administration with grapefruit juice. Clin. Pharmacol. Ther. 57:485-491 (1995).
H. H. T. Kupferschmidt, H. R. Ha, W. H. Ziegler, P. J. Meier, and S. Krähenbühl. Interaction between grapefruit juice and midazolam in humans. Clin. Pharmacol. Ther. 58:20-28 (1995).
K. S. Lown, D. G. Bailey, R. J. Fontana, S. K. Janardan, C. H. Adair, L. A. Fortlage, M. B. Brown, W. Guo, and P. B. Watkins. Grapefruit juice increases felodipine oral availability in humans by increasing intestinal CYP3A protein expression. J. Clin. Invest. 99:2545-2553 (1997).
D. Y. Gomez, V. J. Wacher, S. J. Tomlanovich, M. F. Hebert, and L. Z. Benet. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin. Pharmacol. Ther. 58:15-19 (1995).
J. Baxter, C. Brass, and J. Schentag. Pharmacokinetics of ketoconazole administered intravenously to dogs and orally as tablet and solution to humans and dogs. J. Pharm. Sci. 75:433-447 (1986).
T. Daneshmend, and D. Warnock. Clinical pharmacokinetics of ketoconazole. Clin. Pharmacokinet. 14:13-34 (1988).
J. Madsen. Effects of gender, age, and body mass index on gastro-intestinal transit times. Digest Dis. Sci. 37:1548-1553 (1992).
P. Schmiedlin-Ren, K. E. Thummel, J. M. Fisher, M. F. Paine, K. S. Lown, and P. B. Watkins. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1α,25-dihydroxyvitamin D3. Mol. Pharmacol. 51:741-754 (1997).
J. M. Fisher, S. A. Wrighton, P. B. Watkins, P. Schmiedlin-Ren, J. C. Calamia, D. D. Shen, K. L. Kunze, and K. E. Thummel. First-pass midazolam metabolism catalyzed by 1α,25-dihydroxy Vitamin D3 modified Caco-2 cell monolayers. J. Pharmacol. Exp. Ther. 289:1134-1142 (1999).
M. A. Gibbs, K. E. Thummel, D. D. Shen, and K. L. Kunze. Inhibition of CYP3A in human intestinal and liver microsomes: Comparison of Ki values and impact of CYP3A5 expression. Drug Metab. Dispos. 27:180-187 (1999).
J. V. T yle. Ketoconazole: Mechanism of action, spectrum of activity, pharmacokinetics, drug interactions, adverse reactions and therapeutic use. Pharmacotherapy 4:343-373 (1984).
L. Floren, I. Bekersky, L. Benet, Q. Mekki, D. Dressler, J. Lee, J. Roberts, and M. Hebert. Tacrolimus oral bioavailability double with coadministration of ketoconazole. Clin. Pharmacol. Ther. 62:41-49 (1997).
J. C. Fleishaker, P. G. Pearson, L. C. Wienkers, L. K. Pearson, and G. R. Graves. Biotransformation of tirilazad in humans: 2. Effect of ketoconazole on tirilazad clearance and oral bioavailability. J. Pharmacol. Exp. Ther. 277:991-998 (1996).
E. Antignac, B. Koch, and J. Narbonne. Interactions of imidazole with purified cytochrome P450: Spectral modifications. In, I. Schuster, (ed), Cytochrome P450: Biochemcistry and Biophysics, Taylor and Francis, New York, 1989, pp. 195-199.