Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các rủi ro sau sinh và trong quá trình sinh tùy theo chế độ thụ thai
Tóm tắt
Bài báo này tóm tắt tình trạng hiện tại về ảnh hưởng của phương pháp sinh sản hỗ trợ đối với các rủi ro sau sinh và các diễn biến trong quá trình sinh. Ngoài việc so sánh với dân số chung, bài viết đặc biệt đề cập đến sự khác biệt trong khung điều trị. Để làm rõ điều này, bài báo chủ yếu sử dụng dữ liệu từ các nghiên cứu tổng quan hệ thống và các phân tích tổng hợp về các ca thai kỳ đơn. Trong khi sự gia tăng rủi ro tuyệt đối nói chung là nhỏ, một số phương pháp sinh sản hỗ trợ có thể dẫn đến rủi ro cao hơn về các sự kiện không mong muốn trong giai đoạn perinatal và peripartum. Điều này liên quan đến sự khác biệt trong sự phát triển của thai nhi giữa các chu kỳ tự nhiên và các chu kỳ đông lạnh, cũng như nguy cơ tiền sản giật cao hơn sau khi chuyển phôi đông lạnh. Đối với các bác sĩ lâm sàng, việc biết những khác biệt này là rất quan trọng để có thể tư vấn và chăm sóc cho bệnh nhân một cách phù hợp.
Từ khóa
#thụ thai #sinh sản hỗ trợ #rủi ro sau sinh #diễn biến quá trình sinh #tiền sản giậtTài liệu tham khảo
Adamson GD, Dyer S, Chambers GM et al (2019) International Committee for Monitoring Assisted Reproductive Technology (ICMART): preliminary world report on assisted reproductive technology, 2015. Paper presented at the Abstract ESHRE, Vienna
Deutsches IVF Register (DIR) (2019) Jahrbuch 2018. J Reproduktionsmed Endokrinol 16(6):8 (Sonderheft 1/2019)
Qin JB, Sheng XQ, Wu D et al (2017) Worldwide prevalence of adverse pregnancy outcomes among singleton pregnancies after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Arch Gynecol Obstet 295(2):285–301
Helmerhorst FM, Perquin DA, Donker D et al (2004) Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ 328(7434):261
Jackson RA, Gibson KA, Wu YW et al (2004) Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol 103(3):551–563
McGovern PG, Llorens AJ, Skurnick JH et al (2004) Increased risk of preterm birth in singleton pregnancies resulting from in vitro fertilization-embryo transfer or gamete intrafallopian transfer: a meta-analysis. Fertil Steril 82(6):1514–1520
Pandey S, Shetty A, Hamilton M et al (2012) Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update 18(5):485–503
McDonald SD, Han Z, Mulla S et al (2009) Preterm birth and low birth weight among in vitro fertilization singletons: a systematic review and meta-analyses. Eur J Obstet Gynecol Reprod Biol 146(2):138–148
Pinborg A, Wennerholm UB, Romundstad LB et al (2013) Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update 19(2):87–104
Gui J, Ling Z, Hou X et al (2020) In vitro fertilization is associated with the onset and progression of preeclampsia. Placenta 89:50–57
Thomopoulos C, Salamalekis G, Kintis K et al (2017) Risk of hypertensive disorders in pregnancy following assisted reproductive technology: overview and meta-analysis. J Clin Hypertens 19(2):173–183
Opdahl S, Henningsen AA, Tiitinen A et al (2015) Risk of hypertensive disorders in pregnancies following assisted reproductive technology: a cohort study from the CoNARTaS group. Hum Reprod 30(7):1724–1731
Wennerholm UB, Bergh C (2020) Perinatal outcome in children born after assisted reproductive technologies. Ups J Med Sci. https://doi.org/10.1080/03009734.2020.1726534
Marino JL, Moore VM, Willson KJ et al (2014) Perinatal outcomes by mode of assisted conception and sub-fertility in an Australian data linkage cohort. Plos One 9(1):e80398
Henningsen AA, Wennerholm UB, Gissler M et al (2014) Risk of stillbirth and infant deaths after assisted reproductive technology: a Nordic study from the CoNARTaS group. Hum Reprod 29(5):1090–1096
Rimm AA, Katayama AC, Diaz M et al (2004) A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J Assist Reprod Genet 21(12):437–443
Hansen M, Bower C, Milne E et al (2005) Assisted reproductive technologies and the risk of birth defects—a systematic review. Hum Reprod 20(2):328–338
McDonald SD, Murphy K, Beyene J et al (2005) Perinatel outcomes of singleton pregnancies achieved by in vitro fertilization: a systematic review and meta-analysis. J Obstet Gynaecol Can 27(5):449–459
Hansen M, Kurinczuk JJ, Milne E et al (2013) Assisted reproductive technology and birth defects: a systematic review and meta-analysis. Hum Reprod Update 19(4):330–353
Zhao J, Yan Y, Huang X et al (2020) Do the children born after assisted reproductive technology have an increased risk of birth defects? A systematic review and meta-analysis. J Matern Fetal Neonatal Med 33(2):322–333
Qin J, Sheng X, Wang H et al (2015) Assisted reproductive technology and risk of congenital malformations: a meta-analysis based on cohort studies. Arch Gynecol Obstet 292(4):777–798
Zheng Z, Chen L, Yang T et al (2018) Multiple pregnancies achieved with IVF/ICSI and risk of specific congenital malformations: a meta-analysis of cohort studies. Reprod Biomed Online 36(4):472–482
Hoorsan H, Mirmiran P, Chaichian S et al (2017) Congenital malformations in infants of mothers undergoing assisted reproductive technologies: a systematic review and meta-analysis study. J Prev Med Public Health 50(6):347–360
Giorgione V, Parazzini F, Fesslova V et al (2018) Congenital heart defects in IVF/ICSI pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol 51(1):33–42
Bonduelle M, Van Assche E, Joris H et al (2002) Prenatal testing in ICSI pregnancies: incidence of chromosomal anomalies in 1586 karyotypes and relation to sperm parameters. Hum Reprod 17(10):2600–2614
Belva F, De Schrijver F, Tournaye H et al (2011) Neonatal outcome of 724 children born after ICSI using non-ejaculated sperm. Hum Reprod 26(7):1752–1758
Zhu L, Zhang Y, Liu Y et al (2016) Maternal and live-birth outcomes of pregnancies following assisted reproductive technology: a retrospective cohort study. Sci Rep 6:35141
Luke B (2017) Pregnancy and birth outcomes in couples with infertility with and without assisted reproductive technology: with an emphasis on US population-based studies. Am J Obstet Gynecol 217(3):270–281
Dhalwani NN, Boulet SL, Kissin DM et al (2016) Assisted reproductive technology and perinatal outcomes: conventional versus discordant-sibling design. Fertil Steril 106(3):710–716.e712
Henningsen AK, Pinborg A, Lidegaard O et al (2011) Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling-cohort study. Fertil Steril 95(3):959–963
Romundstad LB, Romundstad PR, Sunde A et al (2008) Effects of technology or maternal factors on perinatal outcome after assisted fertilisation: a population-based cohort study. Lancet 372(9640):737–743
Goisis A, Remes H, Martikainen P et al (2019) Medically assisted reproduction and birth outcomes: a within-family analysis using Finnish population registers. Lancet 393(10177):1225–1232
Ombelet W, Cadron I, Gerris J et al (2005) Obstetric and perinatal outcome of 1655 ICSI and 3974 IVF singleton and 1102 ICSI and 2901 IVF twin births: a comparative analysis. Reprod Biomed Online 11(1):76–85
Lie RT, Lyngstadaas A, Orstavik KH et al (2005) Birth defects in children conceived by ICSI compared with children conceived by other IVF-methods; a meta-analysis. Int J Epidemiol 34(3):696–701
Wen J, Jiang J, Ding C et al (2012) Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis. Fertil Steril 97(6):1331–1337 (e1331–1334)
Davies MJ, Moore VM, Willson KJ et al (2012) Reproductive technologies and the risk of birth defects. N Engl J Med 366(19):1803–1813
Massaro PA, MacLellan DL, Anderson PA et al (2015) Does intracytoplasmic sperm injection pose an increased risk of genitourinary congenital malformations in offspring compared to in vitro fertilization? A systematic review and meta-analysis. J Urol 193(5 Suppl):1837–1842
Woldringh GH, Besselink DE, Tillema AH et al (2010) Karyotyping, congenital anomalies and follow-up of children after intracytoplasmic sperm injection with non-ejaculated sperm: a systematic review. Hum Reprod Update 16(1):12–19
Fedder J, Loft A, Parner ET et al (2013) Neonatal outcome and congenital malformations in children born after ICSI with testicular or epididymal sperm: a controlled national cohort study. Hum Reprod 28(1):230–240
Deutsches IVF Register (DIR) (2015) Jahrbuch 2015. J Reproduktionsmed Endokrinol 12(6):15 (Sonderheft 1/2015)
Wong KM, van Wely M, Mol F et al (2017) Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst Rev 3:Cd11184
Roque M, Haahr T, Geber S et al (2019) Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis of reproductive outcomes. Hum Reprod Update 25(1):2–14
Wang A, Santistevan A, Cohn HK et al (2017) Freeze-only versus fresh embryo transfer in a multicenter matched cohort study: contribution of progesterone and maternal age to success rates. Fertil Steril 108(2):254–261 (e254)
Donnez J, Dolmans MM (2017) Fertility Preservation in Women. N Engl J Med 377(17):1657–1665
Ernstad EG, Wennerholm UB, Khatibi A et al (2019) Neonatal and maternal outcome after frozen embryo transfer: increased risks in programmed cycles. Am J Obstet Gynecol 221(2):126 (e121–126 e118)
Sha T, Yin X, Cheng W et al (2018) Pregnancy-related complications and perinatal outcomes resulting from transfer of cryopreserved versus fresh embryos in vitro fertilization: a meta-analysis. Fertil Steril 109(2):330–342 (e339)
Maheshwari A, Raja EA, Bhattacharya S (2016) Obstetric and perinatal outcomes after either fresh or thawed frozen embryo transfer: an analysis of 112,432 singleton pregnancies recorded in the Human Fertilisation and Embryology Authority anonymized dataset. Fertil Steril 106(7):1703–1708
Wennerholm UB, Soderstrom-Anttila V, Bergh C et al (2009) Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod 24(9):2158–2172
Pelkonen S, Hartikainen AL, Ritvanen A et al (2014) Major congenital anomalies in children born after frozen embryo transfer: a cohort study 1995–2006. Hum Reprod 29(7):1552–1557
Alviggi C, Conforti A, Carbone IF et al (2018) Influence of cryopreservation on perinatal outcome after blastocyst- vs cleavage-stage embryo transfer: systematic review and meta-analysis. Ultrasound Obstet Gynecol 51(1):54–63
Maheshwari A, Pandey S, Amalraj Raja E et al (2018) Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Hum Reprod Update 24(1):35–58
Belva F, Bonduelle M, Roelants M et al (2016) Neonatal health including congenital malformation risk of 1072 children born after vitrified embryo transfer. Hum Reprod 31(7):1610–1620
Ishihara O, Araki R, Kuwahara A et al (2014) Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril 101(1):128–133
Wennerholm UB, Henningsen AK, Romundstad LB et al (2013) Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group. Hum Reprod 28(9):2545–2553
Zhang B, Wei D, Legro RS et al (2018) Obstetric complications after frozen versus fresh embryo transfer in women with polycystic ovary syndrome: results from a randomized trial. Fertil Steril 109(2):324–329. https://doi.org/10.1016/j.fertnstert.2017.10.020
Berntsen S, Pinborg A (2018) Large for gestational age and macrosomia in singletons born after frozen/thawed embryo transfer (FET) in assisted reproductive technology (ART). Birth Defects Res 110(8):630–643
Sites CK, Wilson D, Barsky M et al (2017) Embryo cryopreservation and preeclampsia risk. Fertil Steril 108(5):784–790
Chen ZJ, Shi Y, Sun Y et al (2016) Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med 375(6):523–533
Conrad KP, Baker VL (2013) Corpus luteal contribution to maternal pregnancy physiology and outcomes in assisted reproductive technologies. Am J Physiol Regul Integr Comp Physiol 304(2):R69–R72
Sherwood O (1994) Relaxin. In: Knobil ENJ, Greenwald GS et al (Hrsg) The physiology of reproduction. Raven, New York, S 861–1009
Itskovitz J, Sealey JE (1987) Ovarian prorenin-renin-angiotensin system. Obstet Gynecol Surv 42(9):545–551
Itskovitz J, Sealey JE, Glorioso N et al (1987) Plasma prorenin response to human chorionic gonadotropin in ovarian-hyperstimulated women: correlation with the number of ovarian follicles and steroid hormone concentrations. Proc Natl Acad Sci U S A 84(20):7285–7289
Johnson MR, Abdalla H, Allman AC et al (1991) Relaxin levels in ovum donation pregnancies. Fertil Steril 56(1):59–61
von Versen-Höynck F, Strauch NK, Liu J et al (2019) Effect of mode of conception on maternal serum relaxin, creatinine, and sodium concentrations in an infertile population. Reprod Sci 26(3):412–419. https://doi.org/10.1177/1933719118776792
von Versen-Höynck F, Narasimhan P, Selamet Tierney ES et al (2019) Absent or excessive corpus luteum number is associated with altered maternal vascular health in early pregnancy. Hypertension 73(3):680–690
Conrad KP, Petersen JW, Chi YY et al (2019) Maternal cardiovascular dysregulation during early pregnancy after in vitro fertilization cycles in the absence of a corpus luteum. Hypertension 74(3):705–715
von Versen-Höynck F, Hackl S, Selamet Tierney ES et al (2020) Maternal vascular health in pregnancy and postpartum after assisted reproduction. Hypertension 75(2):549–560
von Versen-Höynck F, Schaub AM, Chi YY et al (2019) Increased preeclampsia risk and reduced aortic compliance with in vitro fertilization cycles in the absence of a corpus luteum. Hypertension 73(3):640–649
Saito K, Kuwahara A, Ishikawa T et al (2019) Endometrial preparation methods for frozen-thawed embryo transfer are associated with altered risks of hypertensive disorders of pregnancy, placenta accreta, and gestational diabetes mellitus. Hum Reprod 34(8):1567–1575. https://doi.org/10.1093/humrep/dez079
Maheshwari A, Pandey S, Shetty A et al (2012) Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril 98(2):368–377 (e361–369)
Zhao J, Xu B, Zhang Q et al (2016) Which one has a better obstetric and perinatal outcome in singleton pregnancy, IVF/ICSI or FET?: a systematic review and meta-analysis. Reprod Biol Endocrinol 14(1):51
Gu F, Li S, Zheng L et al (2019) Perinatal outcomes of singletons following vitrification versus slow-freezing of embryos: a multicenter cohort study using propensity score analysis. Hum Reprod 34(9):1788–1798
Li Z, Wang YA, Ledger W et al (2014) Clinical outcomes following cryopreservation of blastocysts by vitrification or slow freezing: a population-based cohort study. Hum Reprod 29(12):2794–2801
Ernstad GE, Spangmose AL, Opdahl S et al (2019) Perinatal and maternal outcome after vitrification of blastocysts: a Nordic study in singletons from the CoNARTaS group. Hum Reprod 34(11):2282–2289
Serhal PF, Craft IL (1989) Oocyte donation in 61 patients. Lancet 1(8648):1185–1187
Moreno-Sepulveda J, Checa MA (2019) Risk of adverse perinatal outcomes after oocyte donation: a systematic review and meta-analysis. J Assist Reprod Genet 36(10):2017–2037
Pecks U, Maass N, Neulen J (2011) Oocyte donation: a risk factor for pregnancy-induced hypertension: a meta-analysis and case series. Dtsch Arztebl Int 108(3):23–31
Blazquez A, Garcia D, Rodriguez A et al (2016) Is oocyte donation a risk factor for preeclampsia? A systematic review and meta-analysis. J Assist Reprod Genet 33(7):855–863
Schwarze JE, Borda P, Vasquez P et al (2018) Is the risk of preeclampsia higher in donor oocyte pregnancies? A systematic review and meta-analysis. Jbra Assist Reproduction 22(1):15–19
Al Shammary M, Shaw A, Bacal V et al (2019) Risk of lower birth weight and shorter gestation in oocyte donation pregnancies compared with other assisted reproductive technology methods: systematic review. J Obstet Gynaecol Can 42(7):889–899. https://doi.org/10.1016/j.jogc.2019.08.045
Mascarenhas M, Sunkara SK, Antonisamy B et al (2017) Higher risk of preterm birth and low birth weight following oocyte donation: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 218:60–67
Storgaard M, Loft A, Bergh C et al (2017) Obstetric and neonatal complications in pregnancies conceived after oocyte donation: a systematic review and meta-analysis. Bjog 124(4):561–572
Schwartz KM, Boulet SL, Kawwass JF et al (2019) Perinatal outcomes among young donor oocyte recipients. Hum Reprod 34(12):2533–2540
Glujovsky D, Farquhar C, Quinteiro Retamar AM et al (2016) Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev 6:Cd2118
Martins WP, Nastri CO, Rienzi L et al (2017) Blastocyst vs cleavage-stage embryo transfer: systematic review and meta-analysis of reproductive outcomes. Ultrasound Obstet Gynecol 49(5):583–591
Hviid KVR, Malchau SS, Pinborg A et al (2018) Determinants of monozygotic twinning in ART: a systematic review and a meta-analysis. Hum Reprod Update 24(4):468–483
Chang HJ, Lee JR, Jee BC et al (2009) Impact of blastocyst transfer on offspring sex ratio and the monozygotic twinning rate: a systematic review and meta-analysis. Fertil Steril 91(6):2381–2390
Dar S, Lazer T, Shah PS et al (2014) Neonatal outcomes among singleton births after blastocyst versus cleavage stage embryo transfer: a systematic review and meta-analysis. Hum Reprod Update 20(3):439–448
Kallen B, Finnstrom O, Lindam A et al (2010) Blastocyst versus cleavage stage transfer in in vitro fertilization: differences in neonatal outcome? Fertil Steril 94(5):1680–1683
Ernstad GE, Bergh C, Khatibi A et al (2016) Neonatal and maternal outcome after blastocyst transfer: a population-based registry study. Am J Obstet Gynecol 214(3):378 (e371–378 e310)
Martins WP, Nastri CO, Rienzi L et al (2016) Obstetrical and perinatal outcomes following blastocyst transfer compared to cleavage transfer: a systematic review and meta-analysis. Hum Reprod 31(11):2561–2569
Wang X, Du M, Guan Y et al (2017) Comparative neonatal outcomes in singleton births from blastocyst transfers or cleavage-stage embryo transfers: a systematic review and meta-analysis. Reprod Biol Endocrinol 15(1):36
Maheshwari A, Kalampokas T, Davidson J et al (2013) Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of blastocyst-stage versus cleavage-stage embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril 100(6):1615–1621 (e1611–1610)
Society for Reproductive Assisted Technology National Summary Report for 2015 (2015) https://www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?#patient-cumulative. Zugegriffen: 31.3.2020
Bundesgesundheitsministerium (BMG) (2020) 2. Bericht der Bundesregierung über die Erfahrungen mit der Präimplantationsdiagnostik. https://www.bundesgesundheitsministerium.de/ministerium/meldungen/2020/2-bericht-praeimplantationsdiagnostik.html. Zugegriffen: 31.3.2020
Heijligers M, van Montfoort A, Meijer-Hoogeveen M et al (2018) Perinatal follow-up of children born after preimplantation genetic diagnosis between 1995 and 2014. J Assist Reprod Genet 35(11):1995–2002
Zhang WY, von Versen-Hoynck F, Kapphahn KI et al (2019) Maternal and neonatal outcomes associated with trophectoderm biopsy. Fertil Steril 112(2):283–290.e282
