Performance models of storage contention in cloud environments

Software & Systems Modeling - Tập 12 - Trang 681-704 - 2012
Stephan Kraft1, Giuliano Casale2, Diwakar Krishnamurthy3, Des Greer4, Peter Kilpatrick4
1SAP Research, Belfast, UK
2Department of Computing, Imperial College London, London, UK
3Department of ECE, University of Calgary, Calgary, Canada
4School of EEECS, Queen’s University Belfast, Belfast, UK

Tóm tắt

We propose simple models to predict the performance degradation of disk requests due to storage device contention in consolidated virtualized environments. Model parameters can be deduced from measurements obtained inside Virtual Machines (VMs) from a system where a single VM accesses a remote storage server. The parameterized model can then be used to predict the effect of storage contention when multiple VMs are consolidated on the same server. We first propose a trace-driven approach that evaluates a queueing network with fair share scheduling using simulation. The model parameters consider Virtual Machine Monitor level disk access optimizations and rely on a calibration technique. We further present a measurement-based approach that allows a distinct characterization of read/write performance attributes. In particular, we define simple linear prediction models for I/O request mean response times, throughputs and read/write mixes, as well as a simulation model for predicting response time distributions. We found our models to be effective in predicting such quantities across a range of synthetic and emulated application workloads.

Tài liệu tham khảo

Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z., Pu, C.: An analysis of performance interference effects in virtual environments. In: ISPASS, pp. 200–209. IEEE (2007) Ganger, G.R., Patt, Y.N.: The process-flow model: examining I/O performance from the system’s point of view. In: SIGMETRICS, pp. 86–97. ACM, New York (1993) Openfiler. http://www.openfiler.com. Accessed 30 Jan 2012 VMware. http://www.vmware.com. Accessed 30 Jan 2012 iSCSI SAN configuration guide. http://www.vmware.com/pdf/vi3_35/esx_3/r35u2/vi3_35_25_u2_iscsi_san_cfg.pdf. Revision: 20090313. Accessed 14 Mar 2011 Ahmad, I., Anderson, J.M., Holler, A.M., Kambo, R., Makhija, V.: An analysis of disk performance in VMware ESX server virtual machines. In: WWC-6, pp. 65–76. IEEE (2003) Boutcher D., Chandra A.: Does virtualization make disk scheduling passé?. SIGOPS OSR 44(1), 20–24 (2010) Axboe, J.: Linux block IO—present and future. In: Linux Symposium, pp. 51–61 (2004) RHEL 5 IO tuning guide. http://www.redhat.com/docs/wp/performancetuning/iotuning/index.html. Accessed 14 Mar 2011 Gulati, A., Ahmad, I., Waldspurger, C.A.: PARDA: proportional allocation of resources for distributed storage access. In: FAST, pp. 85–98. USENIX (2009) Demers, A., Keshav, S., Shenker, S.: Analysis and simulation of a fair queueing algorithm. In: SIGCOMM, pp. 1–12. ACM, New York (1989) Golestani, S.J.: A self-clocked fair queueing scheme for broadband applications. In: INFOCOM, pp. 636–646 (1994) Goyal, P., Vin, H.M., Chen, H.: Start-time fair queueing: a scheduling algorithm for integrated services packet switching networks. In: SIGCOMM, pp. 157–168. ACM, New York (1996) Bennett, J.C., Zhang, H.: WF2Q: worst-case fair weighted fair queueing. In: INFOCOM, vol. 1, pp. 120–128 (1996) Storage queues and performance. http://communities.vmware.com/docs/DOC-6490. Accessed 30 Jan 2012 Baskett F., Chandy K.M., Muntz R.R., Palacios F.G.: Open, closed, and mixed networks of queues with different classes of customers. J. ACM 22(2), 248–260 (1975) Mi N., Zhang Q., Riska A., Smirni E., Riedel E.: Performance impacts of autocorrelated flows in multi-tiered systems. Elsevier PEVA 64(9–12), 1082–1101 (2007) Casale, G., Mi, N., Smirni, E.: Bound analysis of closed queueing networks with workload burstiness. In: SIGMETRICS, pp. 13–24. ACM, New York (2008) Timekeeping in VMware virtual machines. Technical Report WP-065-PRD-02-01 Rev:20081017, VMware (2008) Blktrace-Linux man page. http://linux.die.net/man/8/blktrace. Accessed 30 Jan 2012 Tshark manpage. http://www.wireshark.org/docs/man-pages/tshark.html. Accessed 30 Jan 2012 Jin W., Chase J.S., Kaur J.: Interposed proportional sharing for a storage service utility. ACM PEVA 32(1), 37–48 (2004) Field, T.: JINQS: an extensible library for simulating multiclass queueing networks, v1.0 user guide. http://www.doc.ic.ac.uk/~ajf/Research/manual.pdf Lazowska E.D., Zahorjan J., Graham G.S., Sevcik K.C.: Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Englewood Cliffs (1984) Casale, G., Zhang, E.Z., Smirni, E.: KPC-toolbox: simple yet effective trace fitting using markovian arrival processes. In: QEST, pp. 83–92 (2008) Begin T., Brandwajn A., Baynat B., Wolfinger B.E., Fdida S.: High-level approach to modeling of observed system behavior. Perform. Eval. 67(5), 386–405 (2010) Riska, A., Riedel, E.: Disk drive level workload characterization. In: USENIX, pp. 97–102 (2006) FFSB-v6.0-rc2. http://sourceforge.net/projects/ffsb. Accessed 30 Jan 2012 Postmark-1.51-7. http://packages.debian.org/sid/postmark. Accessed 30 Jan 2012 Kraft, S., Casale, G., Krishnamurthy, D., Greer, D., Kilpatrick, P.: IO performance prediction in consolidated virtualized environments. In: ICPE, pp. 295–306 (2011) Ahmad, I.: Easy and efficient disk I/O workload characterization in VMware ESX server. In: IISWC, pp. 149–158. IEEE (2007) Bennani, M.N., Menascé, D.A.: Resource allocation for autonomic data centers using analytic performance models. In: ICAC, pp. 229–240. IEEE (2005) Casale, G., Kraft, S., Krishnamurthy, D.: A model of storage I/O performance interference in virtualized systems. In: DCPerf, pp. 34–39, June (2011) Kraft, S., Pacheco-Sanchez, S., Casale, G., Dawson, S.: Estimating service resource consumption from response time measurements. In: VALUETOOLS, pp. 1–10. ICST (2009) Ruemmler C., Wilkes, J.: UNIX disk access patterns. In: USENIX Winter, pp. 405–420 (1993) Filebench. http://www.solarisinternals.com/wiki/index.php/FileBench (2010). Accessed 30 Jan 2012 Padala, P., Zhu, X., Wang, Z., Singhal, S., Shin, K.G.: Performance evaluation of virtualization technologies for server consolidation. Technical Report HPL-2007-59, HP Laboratories Palo Alto (2007) Gulati, A., Kumar, C., Ahmad, I.: Storage workload characterization and consolidation in virtualized environments. In: VPACT (2009) Benevenuto, F., Fernandes, C., Santos, M., Almeida, V., Almeida, J., Janakiraman, G., Santos, J.: Performance models for virtualized applications. In: ISPA, vol. 4331. LNCS, pp. 427–439. Springer, Berlin (2006) Chandra, A., Gong, W., Shenoy, P.: Dynamic resource allocation for shared data centers using online measurements. In: IWQoS, pp. 381–398. Springer, Berlin (2003) Jung, G., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D., Pu, C.: Generating adaptation policies for multi-tier applications in consolidated server environments. In: ICAC, pp. 23–32 (2008) Kundu, S., Rangaswami, R., Dutta, K., Zhao, M.: Application performance modeling in a virtualized environment. In: HPCA, pp. 1–10 (2010) Menascé, D.A., Bennani, M.N.: Autonomic virtualized environments. In: ICAS, p. 28, July (2006) Wang, M., Au, K., Ailamaki, A., Brockwell, A., Faloutsos, C., Ganger, G.R.: Storage device performance prediction with CART models. In: MASCOTS, pp. 588–595. IEEE (2004) Li, J., Chinneck, J., Woodside, M., Litoiu, M., Iszlai, G.: Performance model driven QoS guarantees and optimization in clouds. In: CLOUD ’09, pp. 15–22. IEEE (2009)