Performance analysis of GNSS multipath mitigation using antenna arrays

The Journal of Global Positioning Systems - Tập 14 - Trang 1-15 - 2016
Niranjana Vagle1, Ali Broumandan1, Ali Jafarnia-Jahromi1, Gérard Lachapelle1
1Plan Group, Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Canada

Tóm tắt

Multipath affects the shape of the correlation function and results in biased pseudorange measurements and erroneous navigation solutions. Antenna array processing, which uses signal spatial characteristics, is an effective method to mitigate various types of interference signals. However, the performance of most of the distortionless beamforming techniques degrades in multipath conditions due to the correlation between the desired Line of Sight (LOS) signal and multipath signals. This paper characterizes the performance of different beamforming techniques to mitigate multipath signals through the processing and analysis of simulated and actual data. The main novelty is the investigation of multipath mitigation performance of practically realizable antenna array-based GNSS receivers when the beamforming process is completely integrated into the tracking module after de-spreading. Beamforming techniques such as Delay And Sum (DAS) beamforming, Minimum Power Distortionless Response (MPDR) with and without spatial smoothing are considered. A novel multi-antenna simulator test-bed is developed to generate multipath signals for a multi-antenna platform. A software multi-antenna GPS receiver incorporating different beamforming techniques is then developed to generate pseudorange measurements and position solutions. Carrier-to-Noise ratio (C/N0), pseudorange errors and position solutions before and after beamforming are compared to show the effectiveness of different beamforming techniques to mitigate multipath. Results with simulated and actual GPS signals show improved performance using the MPDR beamformer with spatial smoothing. The utilization of spatial processing results in a pseudorange error reduction of up to 60 % and a position error reduction of up to 30 %.

Tài liệu tham khảo

Amin MG, Wang X, Zhang YD, Ahmad F, Aboutanios E (2016) “Sparse arrays and sampling for interference mitigation and DOA estimation in GNSS,” in Proceedings of the IEEE, vol 99. p 1–16 Arribas J, Closas P, Fern’andez-Prades C, Cuntz M, Konovaltsev A, Meurer M (2012) “Advances in the theory and implementation of GNSS antenna array receivers. In: Georgiadis A, Rogier H, Roselli L, Arcioni P (eds) Microwave and millimeter wave circuits and systems: emerging design, technologies and applications. Wiley, Chichester, pp 227–273 Arribas J, Closas P, Fernández-Prades C (2014) “Interference mitigation in GNSS receivers by array signal processing: a software radio approach”, 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), IEEE, A Coruna, p 121–124. doi:10.1109/SAM.2014.6882355 Backén S, Akos DM, Nordenvaad ML (2008) “Post-processing dynamic GNSS antenna array calibration and deterministic beamforming”. In Proceedings of the 21st international technical meeting of the satellite division of the institute of navigation (ION GNSS 2008), vol 1619. Savannah, p 2806–2814 Borre K, Akos DM, Bertelsen N, Rinder P, Jensen SH (2007) A software-defined GPS and galileo receiver: single-rrequency approach. Birkhäuser, Boston Broumandan A, Jafarnia-Jahromi A, Daneshmand S, Lachapelle G (2016) “Overview of spatial processing approaches for GNSS structural interference detection and mitigation”. In Proceedings of the IEEE, vol 99. p 1–12 Brown A (2000) “Multipath rejection through spatial processing”. In Proceedings of the proceedings of the 13th international technical meeting of the satellite division of the institute of navigation (ION GPS 2000), Salt Lake City, p 2330–2337 Chen YH, Juang JC, Seo J, Lo S, Akos DM, De Lorenzo DS, Enge P (2012) “Design and implementation of real-time software radio for anti-interference GPS/WAAS sensors”. Sensors 12(10):13 417–13 440. doi:10.3390/s121013417 Cuntz M, Konovaltsev A, Meurer M (2016) “Concepts, development, and validation of multiantenna GNSS receivers for resilient navigation”. In Proceedings of the IEEE, vol 99. p 1–14 Daneshmand S, Broumandan A, Nielsen J, Lachapelle G (2013a) “Interference and multipath mitigation utilizing a two-stage beamformer for global navigation satellite systems”. In IET, Radar, Sonar and Navigation 7(1):55–66 Daneshmand S, Broumandan A, Sokhandan N, Lachapelle G (2013b) “GNSS multipath mitigation with a moving antenna array”. IEEE Trans Aerospace Electro Syst, 49(1):693–698 Daneshmand S, Jafarnia-Jahromi A, Broumandan A, Lachapelle G (2014) “A GNSS structural interference mitigation technique using antenna array processing”. In 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), A Coruna, p 109–112 Dierendonck AJV (1996) “GPS Receivers”. In: Parkinson B and Spilker JJ Jr. (eds) [Chapter 8] in global positioning system: theory and applications, vol 1. American Institute of Aeronautics and Astronautics, Inc., Washington D.C., p 329-408 Dierendonck AJV, Fenton P, Ford T (1992) “Theory and performance of narrow correlator spacing in a GPS receiver”. J Inst Navigation 39(3):265–283 Egea D, López-Salcedo JA, Seco-Granados G (2014) “Interference and multipath sequential tests for signal integrity in multi-antenna GNSS receivers”. In 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), A Coruna, p 117–120 Fern’andez-Prades C, Closas P, Arribas J (2011) “Eigenbeamforming for interference mitigation in GNSS receivers”. In Proceedings of the 1st International Conference on Localization and GNSS (ICLGNSS’11), p 93–97 Fern’andez-Prades C, Arribas J, Closas P (2016) “Robust GNSS receivers by array signal processing: theory and implementation”, In Proceedings of the IEEE, vol 99. p 1-14 Fu Z, Hornbostel A, Hammesfahr J, Konovaltsev A (2003) Suppression of multipath and jamming signals by digital beamforming for GPS/Galileo applications. GPS Solutions 6(4):257–264 Garlin L, VanDigelen F, Rousseau JM (1996) “Strobe and edge correlaor multipath mitigation for code”. In Proceedings of the proceedings of the 9th international technical meeting of the satellite dicision of the institute of navigation, Kansas City, p 657–664 Gupta IJ, Weiss IM, Morrison AW (2016) “Desired features of adaptive antenna arrays for GNSS receivers”. In Proceedings of the IEEE, vol 99. p 1-12 Joosten P, Pany T, Winkel J (2002) The impact of unmodelled multipath on ambiguity resolution. In: Proceedings of the proceedings of the 15th international technical meeting of the satellite division of the institute of navigation (ION GPS 2002). Oregon Convention Center, Portland, pp 953–961 Kalyanaraman SK, Braasch MS (2007) “Tight Integration of a GPS adaptive array with a software-defined receiver”. In Proceedings of the 2007 national technical meeting of the institute of navigation, San Diego, p 657–668 Kalyanaraman SK, Braasch MS (2010) “GPS adaptive array phase compensation using a software radio architecture”, Navigation, J Inst Navigation 57(1):53-68 Konovaltsev A, Antreich F, Hornbostel A (2007) “Performance assessment of antenna array algorithms for multipath and interference mitigation” in Proc. 2nd Workshop GNSS Signals & Signal Process, ESTEC, Noordwijk Lee J-H, Hsiao S-W (2008) “adaptive processing for beamforming with coherent interference using circular arrays”. Digital Signal Process 18(5):813–834 Manosas-Caballu M, Seco-Granados G, Swindlehurst AL (2013) “robust beamforming via FIR filtering for GNSS multipath mitigation” in Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, p 4173–4177 Misra P and Enge P (1996) Global Positioning System, Signals, Measurements and Performance, vol. 2. Ganga-Jamuna Press, ISBN 0-9709544-1-7 Novatel GPSAntennaTM model 501 (http://www.novatel.com/assets/Documents/Manuals/om-20000001.pdf). Accessed 10 Apr 2016 Petovello MG, O’Driscoll C, Lachapelle G, Borio D, Murtaza H (2008) architecture and benefits of an advanced GNSS software receiver. J Global Positioning Sys 7(2):156–168 Ray JK, Cannon ME, Fenton P (1999) “Code Range and Carrier Phase Multipath Mitigation Using SNR, Range and Phase Measurements in a Multi-Antenna System”, Proceedings of ION GPS-99 (Nashville, September 14–17) Reddy V, Paulraj A, Kailath T (1987) “analysis of the optimum beamformer in the presence of correlated sources and its behavior under spatial smoothing”. IEEE Trans Acc Signal Process 35(7):927–936 Rougerie S, Carrie G, Ries L (2011) “Multipath mitigation methods based on antenna array,” in Proceedings of the International Technical Meeting of Institute of Navigation (ITM’11), San Diego, p 596–605 Rougerie S, Vincent CGF, Ries L, Monnerat M (2012) “A new multipath mitigation method for GNSS receivers based on antenna array,” Intl J Navigation Observation 2012:804732. doi:10.1155/2012/804732 Sahmoudi M, Amin M (2007), “Optimal robust beamforming for interference and multipath mitigation in GNSS arrays,” in Proc. IEEE int. conf. acoust. speech signal process, vol. 3. Honolulu, p 693–696 Seco-Granados G, Fernandez-Rubio JA, Fernandez-Prades C (2005) “ML estimator and hybrid beamformer for multipath and interference mitigation in GNSS receivers”. IEEE Trans Signal Process 53(3):1194–1208 Van Nee R, Siereceld J, Fenton PC, Townsend BR (1994) “Multipath estimating delay lock loop: approaching theoretical accuracy limits”, in Proceedings of the position location and navigation synopsium, IEEE Las Vegas, Nevada, p 246–251 Van Trees HL (2002) Optimum array processing, detection, estimation, and modulation theory part IV. Wiley, New York, pp 600–699 Vicario JL, Barcelo M, Mañosas M, Seco-Granados G, Antreich F, Cebrian JM, Picanyol J, Amarillo F (2010) “A novel look into digital beamforming techniques for multipath and interference mitigation in Galileo ground stations”, In: 2010 5th advanced satellite multimedia systems conference and the 11th signal processing for space communications workshop, p 240–247 Widrow B, Duvall K, Gooch RP, Newman W (1982) “Signal cacellation phenomena in adaptive antennas: causes and cures”. IEEE Trans Antennas Propag 30(3):469–478