Percutaneous, intra-articular, chevron osteotomy (PeICO) for the treatment of mild-to-moderate hallux valgus: a case series
Tóm tắt
Treatment for hallux valgus (HV) remains challenging. Third-generation percutaneous procedures try to reproduce chevron-type osteotomies to replicate their benefits, such as intrinsic stability and reproducibility. We report the first results using a percutaneous, intra-articular, chevron osteotomy (PeICO) technique that mimics the classic intra-articular open chevron procedure, associated with a percutaneous adductor tendon release (PATR) for the treatment of mild-to-moderate HV. From May 2015 to October 2018, a total of consecutive 114 feet (74 patients) were included. Primary outcome measures included radiographic (hallux valgus and intermetatarsal angles) and clinical parameters such as visual analog scale (VAS), FAAM Activities of Daily Living (ADL), and FAAM Sport, AOFAS Score, and MOXFQ, preoperatively and at final follow-up (Minimum 18 months). A patient satisfaction survey was also performed. Pronation and length of the first metatarsal were also assessed. Secondary outcomes included fluoroscopic time, length of surgery, complications, recurrence, and re-operation rates. At 24.09 months on average, the AOFAS score improved from 52.1 points preoperatively to 91.1 (p < 0.001) at the latest follow-up. VAS decreased from 6.3 to 1. Also, FAAM ALD, FAAM Sport, and MOXFQ showed statistically significant differences (p < 0.001) when comparing pre-operative and post-operative periods. Patients found the procedure to be excellent in 82% and very good in 13.5% of cases. Our global complication and re-operation rates were 5.26% and 3.5% (screw removal), respectively. PeICO combined with PATR proved to be a safe, reliable, and effective technique for the correction of mild-to-moderate HV deformity.
Tài liệu tham khảo
Barg A, Harmer JR, Presson AP et al (2018) Unfavorable outcomes following surgical treatment of hallux valgus deformity: a systematic literature review. J Bone Joint Surg Am 100(18):1563–1573. https://doi.org/10.2106/JBJS.17.00975
Klugarova J, Hood V, Bath-Hextall F et al. (2017) Effectiveness of surgery for adults with hallux valgus deformity: a systematic review. JBI Database System Rev Implement Rep 15(6):1671–1710. https://doi.org/10.11124/JBISRIR-2017-003422.
Matar HE (2020) Platt SR (2020) Overview of randomised controlled trials in hallux valgus surgery (2,184 patients). Foot Ankle Surg S1268–7731(20):30078–30083. https://doi.org/10.1016/j.fas.2020.04.013
Del Vecchio JJ, Ghioldi ME (2020) Evolution of minimally invasive surgery in hallux valgus. Foot Ankle Clin 25(1):79–95. https://doi.org/10.1016/j.fcl.2019.10.010
Jowett CRJ, Bedi HS (2017) Preliminary results and learning curve of the minimally invasive chevron Akin operation for hallux valgus. J Foot Ankle Surg 56(3):445–452. https://doi.org/10.1053/j.jfas.2017.01.002
Kaufmann G, Dammerer D, Heyenbrock F et al (2019) Minimally invasive versus open chevron osteotomy for hallux valgus correction: a randomized controlled trial. Int Orthop 43(2):343–350. https://doi.org/10.1007/s00264-018-4006-8
Lai MC, Rikhraj IS, Woo YL et al (2018) Clinical and radiological outcomes comparing percutaneous chevron-Akin osteotomies vs open scarf-Akin osteotomies for hallux valgus. Foot Ankle Int 39(3):311–317. https://doi.org/10.1177/1071100717745282
Liszka H Gądek A(2020) Percutaneous transosseous suture fixation of the Akin osteotomy and minimally invasive chevron for correction of hallux valgus. Foot Ankle Int 41(9):1079–1091. https://doi.org/10.1177/1071100720935036
Vernois J, Redfern D (2013) Percutaneous chevron; the union of classic stable fixed approach and percutaneous technique. FußSprunggelenk 11(2):70–75
Jeyaseelan L, Malagelada F (2020) Minimally invasive hallux valgus surgery-a systematic review and assessment of state of the art. Foot Ankle Clin 25(3):345–359. https://doi.org/10.1016/j.fcl.2020.05.001
Malagelada F, Sahirad C, Dalmau-Pastor M et al (2019) Minimally invasive surgery for hallux valgus: a systematic review of current surgical techniques. Int Orthop 43(3):625–637. https://doi.org/10.1007/s00264-018-4138-x
Del Vecchio JJ, Ghioldi ME, Uzair AE et al (2019) Percutaneous, intra-articular, chevron osteotomy (PeICO) for the treatment of hallux valgus: a cadaveric study. Foot Ankle Int 40(5):586–595. https://doi.org/10.1177/1071100718820696
Yamaguchi S, Sasho T, Endo J et al (2015) Shape of the lateral edge of the first metatarsal head changes depending on the rotation and inclination of the first metatarsal: a study using digitally reconstructed radiographs. J Orthop Sci 20(5):868–874. https://doi.org/10.1007/s00776-015-0749-x
Lewis TL, Ray R, Miller G et al (2021) Third-generation minimally invasive chevron and Akin osteotomies (MICA) in hallux valgus surgery: two-year follow-up of 292 cases. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.20.01178
Dalmau-Pastor M, Malagelada F, Cordier G et al (2020) Anatomical study of minimally invasive lateral release techniques for hallux valgus treatment. Foot Ankle Int 1071100720920863. https://doi.org/10.1177/1071100720920863
Del Vecchio JJ, Dalmau-Pastor M (2020) Percutaneous lateral release in hallux valgus: anatomic basis and indications. Foot Ankle Clin 25(3):373–383. https://doi.org/10.1016/j.fcl.2020.05.003
Lucattelli G, Catani O, Sergio F et al (2020) Preliminary experience with a minimally invasive technique for hallux valgus correction with no fixation. Foot Ankle Int 41(1):37–43. https://doi.org/10.1177/1071100719868725
Chen JY, Rikhraj K, Gatot C et al (2016) Tibial sesamoid position influence on functional outcome and satisfaction after hallux valgus surgery. Foot Ankle Int 37(11):1178–1182. https://doi.org/10.1177/1071100716658456
Kaufmann G, Sinz S, Giesinger JM et al (2019) Loss of correction after chevron osteotomy for hallux valgus as a function of preoperative deformity. Foot Ankle Int 40(3):287–296. https://doi.org/10.1177/1071100718807699
Seo JH, Lee HS, Choi YR, Park SH (2020) Distal chevron osteotomy with lateral release for moderate to severe hallux valgus patients aged sixty years and over. Int Orthop 44(6):1099–1105. https://doi.org/10.1007/s00264-020-04562-5
Del Vecchio JJ, Cordier G, Dealbera ED et al (2021) Correction power of percutaneous adductor tendon release (PATR) for the treatment of hallux valgus: a cadaveric study. J Foot Ankle Surg 9:S1067–2516(21)00121–6. https://doi.org/10.1053/j.jfas.2021.02.012.
Okuda R, Kinoshita M, Yasuda T et al (2007) The shape of the lateral edge of the first metatarsal head as a risk factor for recurrence of hallux valgus. J Bone Joint Surg Am 89(10):2163–2172. https://doi.org/10.2106/JBJS.F.01455
Wagner P, Wagner E (2018)Is the rotational deformity important in our decision-making process for correction of hallux valgus deformity? Foot Ankle Clin 23(2):205–217. https://doi.org/10.1016/j.fcl.2018.01.009
Espinosa N, Maceira E, Myerson MS (2008) Current concept review: metatarsalgia. Foot Ankle Int 29(8):871–879. https://doi.org/10.3113/fai.2008.0000
Nakagawa S, Fukushi J, Nakagawa T et al (2016) Association of metatarsalgia after hallux valgus correction with relative first metatarsal length. Foot Ankle Int 37(6):582–588. https://doi.org/10.1177/1071100716634792
Foran IM, Mehraban N, Jacobsen SK et al (2020) Radiographic impact of Lapidus, proximal lateral closing wedge osteotomy, and suture button procedures on first ray length and dorsiflexion for hallux valgus. Foot Ankle Int 41(8):964–971. https://doi.org/10.1177/1071100720925438
Greeff W, Strydom A, Saragas NP et al (2020) radiographic assessment of relative first metatarsal length following modified Lapidus procedure. Foot Ankle Int 41(8):972–977. https://doi.org/10.1177/1071100720924016
Vopat BG, Lareau CR, Johnson J et al (2013) Comparative study of scarf and extended chevron osteotomies for correction of hallux valgus. Foot Ankle Spec 6(6):409–16. https://doi.org/10.1177/1938640013508431
Bauer T, de Lavigne C, Biau D et al (2009) Percutaneous hallux valgus surgery: a prospective multicenter study of 189 cases. Orthop Clin North Am 40(4):505–514. https://doi.org/10.1016/j.ocl.2009.05.002
Biz C, Fosser M, Dalmau-Pastor M et al (2016) Functional and radiographic outcomes of hallux valgus correction by mini-invasive surgery with Reverdin-Isham and Akin percutaneous osteotomies: a longitudinal prospective study with a 48-month follow-up. J Orthop Surg Res 11(1):157. https://doi.org/10.1186/s13018-016-0491-x
Severyns M, Carret P, Brunier-Agot L et al (2019) Reverdin-Isham procedure for mild or moderate hallux valgus: clinical and radiographic outcomes. Musculoskelet Surg 103(2):161–166. https://doi.org/10.1007/s12306-018-0563-7
Bia A, Guerra-Pinto F, Pereira BS et al (2018) Percutaneous osteotomies in hallux valgus: a systematic review. J Foot Ankle Surg 57(1):123–130. https://doi.org/10.1053/j.jfas.2017.06.027
Faour-Martín O, Martín-Ferrero MA, Valverde García JA et al (2013) Long-term results of the retrocapital metatarsal percutaneous osteotomy for hallux valgus. Int Orthop 37(9):1799–803. https://doi.org/10.1007/s00264-013-1934-1
Holme TJ, Sivaloganathan SS, Patel B (2020) Third-generation minimally invasive chevron Akin osteotomy for hallux valgus. Foot Ankle Int 41(1):50–56. https://doi.org/10.1177/1071100719874360
Choi GW, Kim HJ, Kim TS et al (2016) Comparison of the modified McBride procedure and the distal chevron osteotomy for mild to moderate hallux valgus. J Foot Ankle Surg. 55(4):808–11. https://doi.org/10.1053/j.jfas.2016.02.014
Jeuken RM, Schotanus MG, Kort NP et al (2016) Long-term follow-up of a randomized controlled trial comparing scarf to chevron osteotomy in hallux valgus correction. Foot Ankle Int 37(7):687–95. https://doi.org/10.1177/1071100716639574
Lagaay PM, Hamilton GA, Ford LA et al (2008) Rates of revision surgery using Chevron-Austin osteotomy, Lapidus arthrodesis, and closing base wedge osteotomy for correction of hallux valgus deformity. J Foot Ankle Surg Jul-Aug 47(4):267–272. https://doi.org/10.1053/j.jfas.2008.03.002
Lee M, Walsh J, Smith MM et al (2017) Hallux valgus correction comparing percutaneous chevron/Akin (PECA) and open scarf/Akin osteotomies. Foot Ankle Int 38(8):838–846. https://doi.org/10.1177/1071100717704941
Palmanovich E, Ohana N, Atzmon R et al (2020) MICA: a learning curve. J Foot Ankle Surg 59(4):781–783. https://doi.org/10.1053/j.jfas.2019.07.027