Vận chuyển Percolative và Khuếch tán Tập hợp Gần và Dưới Ngưỡng Percolation của Một Ma trận Polyme Rỗng

Springer Science and Business Media LLC - Tập 23 - Trang 2427-2440 - 2006
Jayne E. Hastedt1, James L. Wright2
1Global Chem Pharm, ALZA Corporation, Mountain View, USA
2Pharmaceutical Development, Infinity Pharmaceuticals, Cambridge, USA

Tóm tắt

Mục đích của nghiên cứu này là phát triển một mô hình vận chuyển khối lượng định lượng để mô tả sự giải phóng của một loại thuốc từ một dạng liều dưới dạng ma trận rỗng gần và dưới ngưỡng percolation của hệ thống. Các hồ sơ giải phóng tích lũy đã được tạo ra cho một loạt các viên nén được cấu tạo từ một hỗn hợp nhị phân với các lượng khác nhau của thành phần không dẫn điện (poly(vinyl stearate)) và dẫn điện (acid benzoic). Vi cấu trúc rỗng đã được phân tích bằng cách sử dụng hình ảnh ba chiều tái tạo của các phần viên nén đã được chiết xuất và cắt mỏng. Poly(vinyl stearate) đã được đặc trưng cho các tính chất vận chuyển, trọng lượng phân tử và tính chất nhiệt. Dựa trên lý thuyết percolation, ma trận nhị phân được xác định có ngưỡng percolation là 0.09 ± 0.02. Vận chuyển, điều mà không thể được giải thích chỉ bằng lý thuyết percolation “cổ điển” hoặc khuếch tán bề mặt, đã được quan sát dưới ngưỡng percolation của hệ thống. Một mô hình mô tả vận chuyển gần và dưới ngưỡng percolation trong các ma trận được cấu thành từ hai pha, polyme và thuốc, đã được phát triển. Mô hình percolation đã phát triển này tính đến quá trình khuếch tán bên trong cấu trúc rỗng và qua các vùng polymer vô định hình không tan của ma trận. Ngưỡng percolation thấp và do đó sự phối hợp cao được kết luận là do các cơ chế vận chuyển khuếch tán rỗng cổ điển hai pha và không cổ điển liên quan đến hệ thống được nghiên cứu.

Từ khóa


Tài liệu tham khảo

J. E. Hastedt and J. L. Wright. Diffusion in porous materials above the percolation threshold. Pharm. Res. 7(9):893–901 (1990). H. Leuenberger, B. D. Rohera, and Ch. Haas. Percolation theory—a novel approach to solid dosage form design. Int. J. Pharm. 38:109–115 (1987). C. Mallard, J. Coudane, I. Rault, and M. Vert. The use of additives to modulate the release of a sparingly water soluble drug entrapped in PLA50 microparticles. J. Microencapsul. 17(1):81–93 (2000). F. Zhang and J. W. McGinity. Properties of hot-melt extruded theophylline tablets containing poly(vinyl acetate). Drug Dev. Ind. Pharm. 26(9): 931–942 (2000). T. Ehtezazi, and C. Washington. Controlled release of macromolecules from PLA microspheres: using porous structure topology. J. Control. Release 68:361–372 (2000). I. Caraballo, M. Millán, A. Fini, L. Rodriguez, and C. Cavallari. Percolation thresholds in ultrasound compacted tablets. J. Control. Release 69:345–355 (2000). M. C. Soriano, I. Caraballo, M. Millan, R. T. Pinero, L. M. Melgoza, and A. M. Rabasco. Influence of two different types of excipient on drug percolation threshold. Int. J. Pharm. 174:63–69 (1998). L. M. Melgoza, I. Caraballo, J. Alvarez-Fuentes, M. Millán, and A. M. Rabasco. Int. J. Pharm. 170:169–177 (1998). L. M. Melgoza, A. M. Rabasco, J. Sandoval, and I. Caraballo. Estimation of the percolation thresholds in dextromethorphan hydrobromide matrices. Eur. J. Pharm. Sci. 12:453–459 (2001). J. D. Bonny and H. Leuenberger. Matrix type controlled release systems. I. Effect of percolation on drug dissolution kinetics. Pharm. Acta Helv. 66:160–164 (1991). J. D. Bonny and H. Leuenberger. Matrix type controlled release systems. II. Percolation effects in non-swellable matrices. Pharm. Acta Helv. 68:25–33 (1993). I. Caraballo, M. Fernández-Arévalo, M. A. Holgado, and A. M. Rabasco. Percolation theory: application to the study of the release behaviour from inert matrix systems. Int. J. Pharm. 96:175–181 (1993). I. Caraballo, J. Alvarez-Fuentes, L. M. Melgoza, M. Millán, M. A. Holgado, A. M. Rabasco, and M. Fernandez-Arevalo. Validation study of the conductometrical analysis. Application to the drug release studies from controlled release systems. J. Pharm. Biomed. Anal. 18:281–285 (1998). I. Caraballo, L. M. Melgoza, J. Alvarez-Fuentes, M. C. Soriano, and A. M. Rabasco. Design of controlled release inert matrices of naltrexone hydrochloride based on percolation concepts. Int. J. Pharm. 181:23–30 (1999). H. Leuenberger. New trends in the production of pharmaceutical granules: the classical batch concept and the problem of scale-up. Eur. J. Pharm. Biopharm. 52:279–288 (2001). H. Leuenberger and L. Ineichen. Percolation theory and physics of compression. Eur. J. Pharm. Biopharm. 44:269–272 (1997). T. Kuny and H. Leuenberger. Compression behaviour of the enzyme β-galactosidase and its mixture with microcrystalline cellulose. Int. J. Pharm. 260:137–147 (2003). C. Imbert, P. Tchoreloff, B. Leclerc, and G. Couarraze. Indices of tableting performance and application of percolation theory to powder compaction. Eur. J. Pharm. Biopharm. 44:273–282 (1997). A. F. Rime, D. Massuelle, F. Kubel, H. R. Hagemann, and E. Doelker. Compressibility and compactibility of powdered polymers: poly(vinyl chloride) powders. Eur. J. Pharm. Bipharm. 44:315–322 (1997). T. Zhou, H. Lewis, R. E. Foster, and S. P. Schwendeman. Development of a multiple-drug delivery implant for intraocular management of proliferative vitreoretinopathy. J. Control. Release 55:281–295 (1998). M. Mestiri, J. P. Benoit, P. Hernigou, J. P. Devissaguet, and F. Puisieux. Cisplatin-loaded poly(methyl methacrylate) implants: a sustained drug delivery system. J. Control. Release 33:107–113 (1995). S. R. Ellis. Porous Alumina Ceramics in Drug Delivery: Processing Concerns and Percolation Models. Ph.D. Thesis, School of Pharmacy. University of Wisconsin-Madison, WI (1990). C. D. Mitescu, M. Allain, E. Guyon, and J. P. Clerc. Electrical conductivity of finite-size percolation networks. J. Phys. A: Math. Gen. 15:2523–2531 (1982). G. G. Jerauld, L. E. Scriven, and H. T. Davis. Percolation and conduction on the 3D Voronoi and regular networks: a second case study in topological disorder. J. Phys. C: Solid State Phys. 17:3429–3439 (1984). D. Stauffer. Introduction to Percolation Theory. Taylor & Francis, Philadelphia, 1985. A. L. Efros. Physics and Geometry of Disorder, Percolation Theory. Mir Publishers, Moscow, 1986. A. Margolina, Z. V. Djordjevic, D. Stauffer, and H. E. Stanley. Corrections to scaling for branched polymers and gels. Phys. Rev. B. 28:1652–1654 (1983). J. E. Hastedt. Diffusional release from a porous polymeric matrix - a model based on percolation theory. M.S. Thesis, School of Pharmacy. University of Wisconsin-Madison, WI (1987). J. E. Hastedt. Percolative transport and cluster diffusion near and below the percolation threshold of a porous polymeric system. Ph.D. Thesis, School of Pharmacy. University of Wisconsin-Madison, WI (1990). KODAK Technical Pan Film 2415/6415 Information. KODAK Publication No. P-255, M6A068 Minor Rev. 2-86-BX, Eastman KODAK Co., Rochester, New York (1985). J. Crank. The Mathematics of Diffusion Oxford University Press, New York (1975). W. J. Burlant and A. Adicoff. Polymerization of vinyl stearate by high energy electrons. J. Polym. Sci. 27:269–274 (1958). T. Higuchi. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 50(10):874–875 (1961). T. Higuchi. Mechanism of sustained-action medication. J. Pharm. Sci. 52(12):1145–1149 (1963). R. A. Siegel. Modeling of drug release from porous polymers. In M. Rosoff (ed.), Controlled Release of Drug: Polymers and Aggregate Systems, VCH Publishers, New York, 1989, pp. 1–51. G. Grimmett. Percolation. Springer, Berlin Heidelberg New York, 1989. S. Kirkpatrick. Percolation and conduction. Rev. Mod. Phys. 45:574–588 (1973). S. Reyes and K. F. Jensen. Percolation concepts in modelling of gas–solid reactions. I. Application to char gasification in the kinetic regime. Chem. Eng. Sci. 41:333–343 (1986). J. Adler, A. Aharony, and D. Stauffer. First exit time of termites and random super-normal conductor networks. J. Phys. A: Math. Gen. 18:L129–L136 (1985). A. Bunde, A. Coniglio, D. C. Hong, and H. E. Stanley. Transport in a two-component randomly composite material: scaling theory and computer simulations of termite diffusion near the superconducting limit. J. Phys. A: Math. Gen. 18:L137–L144 (1985). S. Kirkpartick. In J.C. Garland and D. B. Tanner (eds) AIP Conference Proceedings, No. 40, American Institute of Physics, New York, 1978. C. Domb and N. W. Dalton. Crystal statistics with long-range forces I. The equivalent neighbor model. Proc. Phys. Soc. 89:859–871 (1966). P. Dean and N. F. Bird. Monte Carlo Studies of the Percolation Properties of Two- and Three-Dimensional Lattices, National Physics Lab. Math Div. Ma61, Teddington, Middlesex, England, 1966. H. Winterfeld. Percolation and conduction phenomena in disordered composite media. Ph.D. Thesis, University of Minnesota, Ann Arbor, MN, 1981. M. Bohdanecký and M. Netopilík. The Mark-Houwink-Kuhn-Sakurada exponent of polymers with long side groups: is a 0 = 1/2 a reliable criterion of the theta state? Polymer 36:3377–3384 (1995). W. S. Port, J. E. Hansen, E. F. Jordan Jr., T. J. Dietz, and D. Swern. Polymerizable derivatives of long-chain fatty acids. IV. Vinyl esters. J. Polym. Sci. VII:207–220 (1946). F. M. Aliev, K. S. Pojivilko, and V. N. Zgonnik. SAXS and DSC: studies of surface and size effects for poly(vinyl stearate). Eur. Polym. J. 26:101–104 (1990). D. A. Lutz and L. P. Witnauer. Crystallinity of poly(vinyl stearate). J. Polym. Sci., B, Polym. Lett. 2:31–33 (1964). C. A. Oksanen and G. Zografi. The relationship between the glass transition temperature and water vapor absorption by poly(vinylpyrrolidone). Pharm. Res. 7:654–657 (1990). M. Nilsson and M. Str∅mme. Electrodynamic investigations of conduction processes in humid microcrystalline cellulose tablets. J. Phys. Chem. B. 109:5450–5455 (2005). J. Ricke and G. Reichenauer. Structural investigation of SiO2—Aerogels. J. Non-Cryst. Solids 95–96:1135–1142 (1987). D. Buttner, F. Loffler, R. Caps, and J. Fricke. Investigation of solid thermal conduction in evacuated load-bearing fibrous insulations. High Temp. High Press. 18:537–543 (1986).