Perceived fairness of direct-to-consumer genetic testing business models
Tóm tắt
Although consumers and experts often express concerns regarding the questionable business practices of direct-to-consumer (DTC) genetic testing services (e.g., reselling of consumers’ genetic data), the DTC genetic testing market keeps expanding rapidly. We employ retail fairness as our theoretical lens to address this seeming paradox and conduct a discrete choice experiment with 16 attributes to better understand consumers’ fairness perceptions of DTC genetic testing business models. Our results suggest that, while consumers perceive privacy-preserving DTC genetic testing services fairer, price is the main driver for fairness perception. We contribute to research on consumer perceptions of DTC genetic testing by investigating consumer preferences of DTC genetic testing business models and respective attributes. Further, this research contributes to knowledge about disruptive business models in healthcare and retail fairness by contextualizing the concept of retail fairness in the DTC genetic testing market. We also demonstrate how to utilize discrete choice experiments to elicit perceived fairness.
Tài liệu tham khảo
Adams, J. S. (1963). Toward an Understanding of Inequity. Journal Of Abnormal Psychology, 67, 422–436. https://doi.org/10.1037/h0040968
Adams, J. S. (1965). Inequity in social exchange. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol 2., pp. 267–299). Academic Press. https://doi.org/10.1016/S0065-2601(08)60108-2
Allyse, M. A., Robinson, D. H., Ferber, M. J., & Sharp, R. R. (2018). Direct-to-consumer testing 2.0: Emerging models of direct-to-consumer genetic testing. Mayo Clinic Proceedings, 93(1), 113–120. https://doi.org/10.1016/j.mayocp.2017.11.001
Anderson, C. L., & Agarwal, R. (2009). Genetic information altruists: how far and to whom does their generosity extend? Paper presented at the Proceedings of the 30th International Conference on Information Systems, Phoenix, Arizona, USA.
Anderson, C. L., & Agarwal, R. (2011). The digitization of healthcare: boundary risks, emotion, and consumer willingness to disclose personal health information. Information Systems Research, 22(3), 469–490. https://doi.org/10.1287/isre.1100.0335
Bies, R. J. M. (1986). Interactional justice: communication criteria of fairness. In J. S. Lewicki & B. H. Bazerman (Eds.), Research on negotiation in organizations: a series of analytical essays and critical reviews (Vol. 1, pp. 43–55). JAI Press.
Blumenschein, P., Lilley, M., Bakal, J. A., & Christian, S. (2016). Evaluating stakeholder’s perspective on referred out genetic testing in Canada: a discrete choice experiment. Clinical Genetics, 89(1), 133–138. https://doi.org/10.1111/cge.12592
Briscoe, F., Ajunwa, I., Gaddis, A., & McCormick, J. (2020). Evolving public views on the value of one’s DNA and expectations for genomic database governance: results from a national survey. PLoS One1, 15(3), e0229044. https://doi.org/10.1371/journal.pone.0229044
Carr, C. L. (2007). The Fairserv model: consumer reactions to services based on a multidimensional evaluation of service fairness. Decision Sciences, 38(1), 107–130. https://doi.org/10.1111/j.1540-5915.2007.00150.x
Cesarini, D., Johannesson, M., Magnusson, P. K. E., & Wallace, B. (2012). The behavioral genetics of behavioral anomalies. Management Science, 58(1), 21–34. https://doi.org/10.1287/mnsc.1110.1329
Cohen, R. L., Lind, E. A., & Tyler, T. R. (1989). The social psychology of procedural justice. Contemporary Sociology, 18(5). https://doi.org/10.2307/2073346
Cohen-Charash, Y., & Spector, P. E. (2001). The role of justice in organizations: a meta-analysis. Organizational behavior and human decision processes, 86(2), 278–321. https://doi.org/10.1006/obhd.2001.2958
Constantiou, I., Legarth, M. F., & Olsen, K. B. (2012). What are users’ intentions towards real money trading in massively multiplayer online games? Electronic Markets, 22(2), 105–115. https://doi.org/10.1007/s12525-011-0076-9
Critchley, C., Nicol, D., & McWhirter, R. (2017). Identifying public expectations of genetic biobanks. Public Understanding of Science, 26(6), 671–687. https://doi.org/10.1177/0963662515623925
Crosby, F. (1976). A model of egoistical relative deprivation. Psychological Review, 83(2), 85–113. https://doi.org/10.1037/0033-295x.83.2.85
Daviet, R., Nave, G., & Wind, J. (2021). Genetic data: potential uses and misuses in marketing. Journal of Marketing, 86(1), 7–26. https://doi.org/10.1177/0022242920980767
de Bekker-Grob, E. W., Donkers, B., Jonker, M. F., & Stolk, E. A. (2015). Sample size requirements for discrete-choice experiments in healthcare: a practical guide. The Patient - Patient-Centered Outcomes Research, 8(5), 373–384. https://doi.org/10.1007/s40271-015-0118-z
de Vries, J., Tindana, P., Littler, K., Ramsay, M., Rotimi, C., Abayomi, A., & Mayosi, B. M. (2015). The H3africa policy framework: negotiating fairness in genomics. Trends in Genetics, 31(3), 117–119. https://doi.org/10.1016/j.tig.2014.11.004
Deutsch, M. (2010). Equity, equality, and need: what determines which value will be used as the basis of distributive justice? Journal of Social Issues, 31(3), 137–149. https://doi.org/10.1111/j.1540-4560.1975.tb01000.x
Dinev, T., & Hart, P. (2006). An extended privacy calculus model for E-commerce transactions. Information Systems Research, 17(1), 61–80. https://doi.org/10.1287/isre.1060.0080
Dong, D., Ozdemir, S., Mong Bee, Y., Toh, S. A., Bilger, M., & Finkelstein, E. (2016). Measuring high-risk patients’ preferences for pharmacogenetic testing to reduce severe adverse drug reaction: a discrete choice experiment. Value in Health, 19(6), 767–775. https://doi.org/10.1016/j.jval.2016.03.1837
Ducournau, P., Gourraud, P. A., Rial-Sebbag, E., Cambon-Thomsen, A., & Bulle, A. (2013). Direct-to-consumer health genetic testing services: what commercial strategies for which socio-ethical issues? Health Sociology Review, 22(1), 75–87. https://doi.org/10.5172/hesr.2013.22.1.75
Gleiss, A., Kohlhagen, M., & Pousttchi, K. (2021). An apple a day – How the platform economy impacts value creation in the healthcare market. Electronic Markets, 31(4), 849–876. https://doi.org/10.1007/s12525-021-00467-2
Haga, S. B., & Willard, H. F. (2008). Letting the genome out of the bottle. The New England Journal of Medicine, 358(20), 2184; author reply 2185. https://doi.org/10.1056/NEJMc086053
Hall, J., Viney, R., Haas, M., & Louviere, J. (2004). Using stated preference discrete choice modeling to evaluate health care programs. Journal of Business Research, 57(9), 1026–1032. https://doi.org/10.1016/S0148-2963(02)00352-1
Hamzelou, J. (2020). DNA firms are set to profit from your data as testing demand falls. Retrieved from https://www.newscientist.com/article/2232770-dna-firms-are-set-to-profit-from-your-data-as-testing-demand-falls/. Accessed 26 May 2022
Han, X., Kwortnik, R. J., & Wang, C. (2008). Service loyalty: an integrative model and examination across service contexts. Journal of Service Research, 11(1), 22–42. https://doi.org/10.1177/1094670508319094
Hendricks-Sturrup, R. M., & Lu, C. Y. (2019). Direct-to-consumer genetic testing data privacy: key concerns and recommendations based on consumer perspectives. Journal of Personalized Medicine, 9(2), 25. https://doi.org/10.3390/jpm9020025
Hogarth, S., Javitt, G., & Melzer, D. (2008). The current landscape for direct-to-consumer genetic testing: legal, ethical, and policy issues. Annual Review of Genomics and Human Genetics, 9(1), 161–182. https://doi.org/10.1146/annurev.genom.9.081307.164319
Hudson, K., Javitt, G., Burke, W., & Byers, P. (2007). Ashg Statement* on direct-to-consumer genetic testing in the United States. The American Journal of Human Genetics, 81(3), 635–637. https://doi.org/10.1086/521634
Hunter, D. J., Khoury, M. J., & Drazen, J. M. (2008). Letting the genome out of the bottle–Will we get our wish? New England Journal Of Medicine, 358(2), 105–107. https://doi.org/10.1056/NEJMp0708162
Hwang, J. C., & Clayton, M. (2008). Disruptive innovation in health care delivery: a framework for business-model innovation. Health Affairs, 27(5), 1329–1335. https://doi.org/10.1377/hlthaff.27.5.1329
Jarvenpaa, S., & Markus, M. L. (2018). Genetic platforms and their commercialization: Three tales of digital entrepreneurship. Paper presented at the 51st Hawaii International Conference on System Sciences, Bis Island, Hawaii.
Jeong, G. (2017). Assessment of direct-to-consumer genetic testing policy in Korea based on consumer preference. Public Health Genomics, 20(3), 166–173. https://doi.org/10.1159/000479290
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/10.1080/01621459.1995.10476572
Kock, N. (2009). The evolution of costly traits through selection and the importance of oral speech in E-collaboration. Electronic Markets, 19(4), 221–232. https://doi.org/10.1007/s12525-009-0024-0
Kuhfeld, W. F. (2010). Marketing research methods in Sas: Experimental design, choice, conjoint, and graphical techniques. SAS Document TS-694. Retrieved from http://support.sas.com/techsup/technote/mr2010.pdf. Accessed 15 July 2022
Lancsar, E., & Louviere, J. (2006). Deleting ‘Irrational’ responses from discrete choice experiments: a case of investigating or imposing preferences? Health Economics, 15(8), 797–811. https://doi.org/10.1002/hec.1104
Lancsar, E., & Louviere, J. (2008). Conducting discrete choice experiments to inform healthcare decision making. PharmacoEconomics, 26(8), 661–677. https://doi.org/10.2165/00019053-200826080-00004
Lewis, C., Clotworthy, M., Hilton, S., Magee, C., Robertson, M. J., Stubbins, L. J., & Corfield, J. (2013). Public views on the donation and use of human biological samples in biomedical research: a mixed methods study. British Medical Journal Open, 3(8), e003056. https://doi.org/10.1136/bmjopen-2013-003056
Majumder, M. A., Cook-Deegan, R., & McGuire, A. L. (2016). Beyond our borders? Public resistance to global genomic data sharing. PLoS Biology, 14(11), e2000206. https://doi.org/10.1371/journal.pbio.2000206
Majumder, M. A., Guerrini, C. J., & McGuire, A. L. (2021). Direct-to-consumer genetic testing: value and risk. Annual Review of Medicine, 72(1), 151–166. https://doi.org/10.1146/annurev-med-070119-114727
Mangham, L. J., Hanson, K., & McPake, B. (2009). How to do (or Not to Do) … Designing a discrete choice experiment for application in a low-income country. Health Policy and Planning, 24(2), 151–158. https://doi.org/10.1093/heapol/czn047
Maxham, J. G., & Netemeyer, R. G. (2002). Modeling customer perceptions of complaint handling over time: the effects of perceived justice on satisfaction and intent. Journal of Retailing, 78(4), 239–252. https://doi.org/10.1016/s0022-4359(02)00100-8
Mccoll-Kennedy, J. R., & Sparks, B. A. (2003). Application of fairness theory to service failures and service recovery. Journal of Service Research, 5(3), 251–266. https://doi.org/10.1177/1094670502238918
McCullough, D. (2002). A user’s guide to conjoint analysis. Marketing Research, 14(2), 18–23.
Meenakshi, J. V., Banerji, A., Manyong, V., Tomlins, K., Mittal, N., & Hamukwala, P. (2012). Using a discrete choice experiment to elicit the demand for a nutritious food: willingness-to-pay for orange maize in Rural Zambia. Journal of Health Economics, 31(1), 62–71. https://doi.org/10.1016/j.jhealeco.2012.01.002
Morrow, J. S. (2009). Insuring fairness: the popular creation of genetic antidiscrimination note. Georgetown Law Review, 98(1), 215–246.
Najafzadeh, M., Johnston, K. M., Peacock, S. J., Connors, J. M., Marra, M. A., Lynd, L. D., & Marra, C. A. (2013). Genomic testing to determine drug response: measuring preferences of the public and patients using Discrete Choice Experiment (Dce). BMC Health Services Research, 13(1), 454. https://doi.org/10.1186/1472-6963-13-454
Namkung, Y., Jang, S., Almanza, B., & Ismail, J. (2009). Identifying the underlying structure of perceived service fairness in restaurants. International Journal of Contemporary Hospitality Management, 21(4), 375–392. https://doi.org/10.1108/09596110910955659
Newcomb, P. (2010). Evolving fairness in research on human subjects. Journal of Child and Adolescent Psychiatric Nursing, 23(3), 123–124. https://doi.org/10.1111/j.1744-6171.2010.00233.x
Nguyen, B., & Klaus, P. P. (2013). Retail fairness: exploring consumer perceptions of fairness towards retailers’ marketing tactics. Journal of Retailing and Consumer Services, 20(3), 311–324. https://doi.org/10.1016/j.jretconser.2013.02.001
Phillips, A. M. (2017). Reading the fine print when buying your genetic self online: direct-to-consumer genetic testing terms and conditions. New Genetics and Society, 36(3), 273–295. https://doi.org/10.1080/14636778.2017.1352468
Phillips, A. M. (2018). Data on direct-to-consumer genetic testing and DNA testing companies [Table]. Retrieved from: https://archive.md/IDU5e
Ramos, E., & Weissman, S. M. (2018). The dawn of consumer-directed testing. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 178(1), 89–97. https://doi.org/10.1002/ajmg.c.31603
Raz, A. E., Niemiec, E., Howard, H. C., Sterckx, S., Cockbain, J., & Prainsack, B. (2020). Transparency, consent and trust in the use of customers’ data by an online genetic testing company: an exploratory survey among 23andme users. New Genetics and Society, 39(4), 459–482. https://doi.org/10.1080/14636778.2020.1755636
Riso, B., Tupasela, A., Vears, D. F., Felzmann, H., Cockbain, J., Loi, M., & Rakic, V. (2017). Ethical sharing of health data in online platforms – Which values should be considered? Life Sciences Society and Policy, 13(1), 12. https://doi.org/10.1186/s40504-017-0060-z
Rothe, H., Jarvenpaa, S. L., & Penninger, A. A. (2019). How do entrepreneurial firms appropriate value in bio data infrastructures: an exploratory qualitative study. Paper presented at the 27th European Conference on Information Systems, Stockholm & Uppsala, Sweden.
Ryan, M., Bate, A., Eastmond, C. J., & Ludbrook, A. (2001). Use of discrete choice experiments to elicit preferences. Quality in Health Care, 10(suppl 1), 55–60. https://doi.org/10.1136/qhc.0100055
Schafer, B. (2021). Why 23andme rocketed 27.9% higher in October. Retrieved from https://www.nasdaq.com/articles/why-23andme-rocketed-27.9-higher-in-october-2021-11-02. Accessed 26 May 2022
Sculpher, M., Bryan, S., Fry, P., de Winter, P., Payne, H., & Emberton, M. (2004). Patients’ preferences for the management of non-metastatic prostate cancer: discrete choice experiment. BMJ (Clinical Research Ed), 328(7436), 382–385. https://doi.org/10.1136/bmj.37972.497234.44
Seiders, K., & Berry, L. L. (1998). Service fairness: what it is and why it matters. Academy of Management Perspectives, 12(2), 8–20. https://doi.org/10.5465/ame.1998.650513
Severin, F., Hess, W., Schmidtke, J., Mühlbacher, A., & Rogowski, W. (2015). Value judgments for priority setting criteria in genetic testing: a discrete choice experiment. Health Policy, 119(2), 164–173. https://doi.org/10.1016/j.healthpol.2014.04.013
Shafer, S. M., Smith, H. J., & Linder, J. C. (2005). The power of business models. Business Horizons, 48(3), 199–207. https://doi.org/10.1016/j.bushor.2004.10.014
Thiebes, S., Lyytinen, K. J., & Sunyaev, A. (2017). Sharing is about caring? Motivating and discouraging factors in sharing individual genomic data. Paper presented at the ICIS.
Thiebes, S., Toussaint, P. A., Ju, J., Ahn, J. H., Lyytinen, K., & Sunyaev, A. (2020). Valuable genomes: taxonomy and archetypes of business models in direct-to-consumer genetic testing. Journal Of Medical Internet Research, 22(1), e14890. https://doi.org/10.2196/14890
Tsai, J. Y., Egelman, S., Cranor, L., & Acquisti, A. (2011). The effect of online privacy information on purchasing behavior: an experimental study. Information Systems Research, 22(2), 254–268. Retrieved from http://www.jstor.org/stable/23015560
Turrini, M. (2018). Online genomes: problematizing the disruptiveness of direct-to-consumer genetic tests. Sociology Compass, 12(11), e12633. https://doi.org/10.1111/soc4.12633
Ugalmugle, S., & Swain, R. (2020). Direct-to-Consumer (Dtc) genetic testing market size projections – 2028. Retrieved from https://www.gminsights.com/industry-analysis/direct-to-consumer-dtc-genetic-testing-market. Accessed 26 May 2022
Vassilakopoulou, P., Skorve, E., & Aanestad, M. (2019). Enabling openness of valuable information resources: curbing data subtractability and exclusion. Information Systems Journal, 29(4), 768–786. https://doi.org/10.1111/isj.12191
Zhu, Y. Q., & Chen, H. G. (2012). Service fairness and customer satisfaction in internet banking: exploring the mediating effects of trust and customer value. Internet Research: Electronic Networking Applications and Policy, 22(4), 482–498. https://doi.org/10.1108/10662241211251006