Per os administered refined olive oil and marine PUFA-rich oils reach the cornea: possible role on oxidative stress through caveolin-1 modulation

Nutrition & Metabolism - Tập 6 - Trang 1-9 - 2009
Mélody Dutot1, Hong Liang2, Chantal Martin1, Delphine Rousseau3, Alain Grynberg3, Jean-Michel Warnet1, Patrice Rat1
1Laboratoire de Toxicologie, Faculté de Pharmacie, Université Paris Descartes, France
2Institut de la Vision, France
3Lipides Membranaires et Fonctions Cardiovasculaires, Institut National de la Recherche Agronomique-UR1154, Faculté de Pharmacie, Université Paris-Sud, France

Tóm tắt

Olive oil and fish oils are known to possess beneficial properties for human health. We investigated whether different oils and fatty acids alone were able to decrease oxidative stress induced on corneal cells. In our in vivo study, rats were fed with marine oils rich in polyunsaturated fatty acids (PUFA) or refined olive oil during 28 days. At the end of the protocol, corneas were analysed for their fatty acids composition to study the incorporation of fatty acids in cell membranes. In our in vitro study, a human corneal cell line was incubated with marine oils or refined olive oil and subjected to oxidative stress (tBHP 50 μM, 1 hour). Effects on reactive oxygen species generation, mitochondria and caveolin-1 expression were studied using microcytofluorometry, flow cytometry and confocal microscopy. Our results indicate that dietary oils changed the fatty acids composition of corneal cell membranes. According to our results, PUFA-rich oils and refined olive oil (free of antioxidants) blocked reactive oxygen species production. Oleic acid, the major fatty acid of olive oil, also decreased oxidative stress. Moreover, oleic acid modified caveolin-1 expression. Antioxidant properties of oleic acid could be due to disruption of membrane microdomains such as caveolae. Oleic acid, a potential potent modulator of oxidative stress, could be added to PUFA-rich oils to prevent oxidative stress-linked corneal pathology.

Tài liệu tham khảo

Owen RW, Haubner R, Wurtele G, Hull E, Spiegelhalder B, Bartsch H: Olives and olive oil in cancer prevention. Eur J Cancer Prev. 2004, 13: 319-326. 10.1097/01.cej.0000130221.19480.7e. Visioli F, Poli A, Gall C: Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev. 2002, 22: 65-75. 10.1002/med.1028. Harwood JL, Yaqoob P: Nutritional and health aspects of olive oil. Eur J Lipid Sci Technol. 2002, 104: 685-697. 10.1002/1438-9312(200210)104:9/10<685::AID-EJLT685>3.0.CO;2-Q. Colussi G, Catena C, Baroselli S, Nadalini E, Lapenna R, Chiuch A, Sechi LA: Omega-3 fatty acids: from biochemistry to their clinical use in the prevention of cardiovascular disease. Recent Pat Cardiovasc Drug Discov. 2007, 2: 13-21. 10.2174/157489007779606158. Birch DG, Birch EE, Hoffman DR, Uauy RD: Retinal development in very-low-birthweight infants fed diets differing in omega-3 fatty acids. Invest Ophthalmol Vis Sci. 1992, 33: 2365-2376. Uauy RD, Birch DG, Birch EE, Tyson JE, Hoffman DR: Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates. Pediatr Res. 1990, 28: 485-492. 10.1203/00006450-199011000-00014. Edidin M: Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol. 2001, 11: 492-496. 10.1016/S0962-8924(01)02139-0. Anderson RG, Kamen BA, Rothberg KG, Lacey SW: Potocytosis: sequestration and transport of small molecules by caveolae. Science. 1992, 255: 410-411. 10.1126/science.1310359. Mineo C, Anderson RG: Potocytosis. Histochem Cell Biol. 2001, 116: 109-118. Schlegel A, Pestell RG, Lisanti MP: Caveolins in cholesterol trafficking and signal transduction: implications for human disease. Front Biosci. 2000, 5: D929-937. 10.2741/schlegel. Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC: Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem. 1997, 272: 25437-25440. 10.1074/jbc.272.41.25437. Li S, Couet J, Lisanti MP: Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem. 1996, 271: 29182-29190. 10.1074/jbc.271.46.29182. Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH, Nishimoto I, Lisanti MP: Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem. 1995, 270: 15693-156701. 10.1074/jbc.270.26.15693. Long AC, Colitz CM, Bomser JA: Apoptotic and necrotic mechanisms of stressinduced human lens epithelial cell death. Exp Biol Med. 2004, 229: 1072-10780. Zhao K, Luo G, Giannelli S, Szeto HH: Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochem Pharmacol. 2005, 70: 1796-1806. 10.1016/j.bcp.2005.08.022. Gniadecki R, Christoffersen N, Wulf HC: Cholesterol-rich plasma membrane domains (lipid rafts) in keratinocytes: importance in the baseline and UVA-induced generation of reactive oxygen species. J Invest Dermatol. 2002, 118: 582-588. 10.1046/j.1523-1747.2002.01716.x. Folch J, Lees M, Sloane Stanley GH: A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957, 226: 497-509. Rousseau D, Helies-Toussaint C, Moreau D, Raederstorff D, Grynberg A: Dietary n-3 PUFAs affect the blood pressure rise and cardiac impairments in a hyperinsulinemia rat model in vivo. Am J Physiol. 2003, 285: H1294-1302. Said T, Dutot M, Christon R, Beaudeux JL, Martin C, Warnet JM, Rat P: Benefits and side effects of different vegetable oil vectors on apoptosis, oxidative stress, and P2X7 cell death receptor activation. Invest Ophthalmol Vis Sci. 2007, 48: 5000-5006. 10.1167/iovs.07-0229. Jenkinson A, Franklin MF, Wahle K, Duthie GG: Dietary intakes of polyunsaturated fatty acids and indices of oxidative stress in human volunteers. Eur J Clin Nutr. 1999, 53: 523-528. 10.1038/sj.ejcn.1600783. Meltzer HM, Folmer M, Wang S, Lie O, Maage A, Mundal HH, Ydersbond TA: Supplementary selenium influences the response to fatty acid-induced oxidative stress in humans. Biol Trace Elem Res. 1997, 60: 51-68. 10.1007/BF02783309. Turrens JF: Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997, 17: 3-8. 10.1023/A:1027374931887. Sheu SS, Nauduri D, Anders MW: Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta. 2006, 1762: 256-265. Pol A, Martin S, Fernandez MA, Ingelmo-Torres M, Ferguson C, Enrich C, Parton RG: Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol Biol Cell. 2005, 16: 2091-2105. 10.1091/mbc.E04-08-0737. Parat MO, Fox PL: Oxidative stress, caveolae and caveolin-1. Subcell Biochem. 2004, 37: 425-441. Volonte D, Zhang K, Lisanti MP, Galbiati F: Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol Biol Cell. 2002, 13: 2502-2517. 10.1091/mbc.01-11-0529.